{"title":"Evidence from marginally significant <i>t</i> statistics.","authors":"Valen E Johnson","doi":"10.1080/00031305.2018.1518788","DOIUrl":null,"url":null,"abstract":"<p><p>This article examines the evidence contained in <i>t</i> statistics that are marginally significant in 5% tests. The bases for evaluating evidence are likelihood ratios and integrated likelihood ratios, computed under a variety of assumptions regarding the alternative hypotheses in null hypothesis significance tests. Likelihood ratios and integrated likelihood ratios provide a useful measure of the evidence in favor of competing hypotheses because they can be interpreted as representing the ratio of the probabilities that each hypothesis assigns to observed data. When they are either very large or very small, they suggest that one hypothesis is much better than the other in predicting observed data. If they are close to 1.0, then both hypotheses provide approximately equally valid explanations for observed data. I find that <i>p</i>-values that are close to 0.05 (i.e., that are \"marginally significant\") correspond to integrated likelihood ratios that are bounded by approximately 7 in two-sided tests, and by approximately 4 in one-sided tests. The modest magnitude of integrated likelihood ratios corresponding to <i>p</i>-values close to 0.05 clearly suggests that higher standards of evidence are needed to support claims of novel discoveries and new effects.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":" ","pages":"129-134"},"PeriodicalIF":1.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00031305.2018.1518788","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2018.1518788","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 18
Abstract
This article examines the evidence contained in t statistics that are marginally significant in 5% tests. The bases for evaluating evidence are likelihood ratios and integrated likelihood ratios, computed under a variety of assumptions regarding the alternative hypotheses in null hypothesis significance tests. Likelihood ratios and integrated likelihood ratios provide a useful measure of the evidence in favor of competing hypotheses because they can be interpreted as representing the ratio of the probabilities that each hypothesis assigns to observed data. When they are either very large or very small, they suggest that one hypothesis is much better than the other in predicting observed data. If they are close to 1.0, then both hypotheses provide approximately equally valid explanations for observed data. I find that p-values that are close to 0.05 (i.e., that are "marginally significant") correspond to integrated likelihood ratios that are bounded by approximately 7 in two-sided tests, and by approximately 4 in one-sided tests. The modest magnitude of integrated likelihood ratios corresponding to p-values close to 0.05 clearly suggests that higher standards of evidence are needed to support claims of novel discoveries and new effects.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.