Karolina Pociute, Jennifer A Schumacher, Saulius Sumanas
{"title":"Clec14a genetically interacts with Etv2 and Vegf signaling during vasculogenesis and angiogenesis in zebrafish.","authors":"Karolina Pociute, Jennifer A Schumacher, Saulius Sumanas","doi":"10.1186/s12861-019-0188-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>C-lectin family 14 Member A (Clec14a) is a transmembrane protein specifically expressed in vascular endothelial cells during embryogenesis. Previous in vitro and in vivo studies have provided conflicting data regarding Clec14a role in promoting or inhibiting angiogenesis, therefore its functional role in vascular development remains poorly understood.</p><p><strong>Results: </strong>Here we have generated a novel clec14a mutant allele in zebrafish embryos using TALEN genome editing. clec14a mutant embryos exhibit partial defects and delay in the sprouting of intersegmental vessels. These defects in angiogenesis are greatly increased upon the knockdown of a structurally related C1qr protein. Furthermore, a partial knockdown of an ETS transcription factor Etv2 results in a synergistic effect with the clec14a mutation and inhibits expression of early vascular markers in endothelial progenitor cells, arguing that clec14a is involved in promoting vasculogenesis. In addition, Clec14a genetically interacts with Vegfa signaling. A partial knockdown of Vegfaa function in the clec14a mutant background resulted in a synergistic inhibition of intersegmental vessel sprouting.</p><p><strong>Conclusions: </strong>These results argue that clec14a is involved in both vasculogenesis and angiogenesis, and suggest that Clec14a genetically interacts with Etv2 and Vegf signaling during vascular development in zebrafish embryos.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"19 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-019-0188-6","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12861-019-0188-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
Background: C-lectin family 14 Member A (Clec14a) is a transmembrane protein specifically expressed in vascular endothelial cells during embryogenesis. Previous in vitro and in vivo studies have provided conflicting data regarding Clec14a role in promoting or inhibiting angiogenesis, therefore its functional role in vascular development remains poorly understood.
Results: Here we have generated a novel clec14a mutant allele in zebrafish embryos using TALEN genome editing. clec14a mutant embryos exhibit partial defects and delay in the sprouting of intersegmental vessels. These defects in angiogenesis are greatly increased upon the knockdown of a structurally related C1qr protein. Furthermore, a partial knockdown of an ETS transcription factor Etv2 results in a synergistic effect with the clec14a mutation and inhibits expression of early vascular markers in endothelial progenitor cells, arguing that clec14a is involved in promoting vasculogenesis. In addition, Clec14a genetically interacts with Vegfa signaling. A partial knockdown of Vegfaa function in the clec14a mutant background resulted in a synergistic inhibition of intersegmental vessel sprouting.
Conclusions: These results argue that clec14a is involved in both vasculogenesis and angiogenesis, and suggest that Clec14a genetically interacts with Etv2 and Vegf signaling during vascular development in zebrafish embryos.
期刊介绍:
BMC Developmental Biology is an open access, peer-reviewed journal that considers articles on the development, growth, differentiation and regeneration of multicellular organisms, including molecular, cellular, tissue, organ and whole organism research.