Biological surface electromyographic switch and necklace-type button switch control as an augmentative and alternative communication input device: a feasibility study.
DongGeon Lee, SeungJun Lee, Kuem Ju Lee, GyuChang Lee
{"title":"Biological surface electromyographic switch and necklace-type button switch control as an augmentative and alternative communication input device: a feasibility study.","authors":"DongGeon Lee, SeungJun Lee, Kuem Ju Lee, GyuChang Lee","doi":"10.1007/s13246-019-00766-1","DOIUrl":null,"url":null,"abstract":"<p><p>Augmentative and alternative communication (AAC) is an approach used to supplement, improve, and support the communication of those with speech or language impairments. We developed an AAC device for diverse approaches, using an electromyographic (EMG) switch and a necklace-type button switch. The EMG switch comprised an EMG signal processor and a switch interface processor. EMG signals were processed using an electrode through the stages of signal acquisition, amplification, filtering, rectification, and smoothing. In the switch interface processor, the microprocessor determined the switch as ON or OFF in response to an input EMG signal and then converted the EMG signal into a keyboard signal, which was transmitted to a smart device via Bluetooth communication. A similar transmission process was used for the necklace-type button switch, and switch signals were input and processed with general-purpose input/output. The first and second feasibility tests for the EMG switch and button switch were conducted in a total of three test sessions. The result of the feasibility test indicated that the major inconvenience and desired improvement associated with the EMG switch were the intricacy of the AAC device settings. The major inconveniences and desired improvements for the necklace-type button switch involved device shifting, volume and weight, and inconvenience in fixing the switch in various directions. Thus, based on the first and second feasibility tests, we developed an additional device. Finally, the EMG switch and necklace-type button switch developed to remedy the inconveniencies had high feasibility.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 3","pages":"839-851"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-019-00766-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00766-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
Augmentative and alternative communication (AAC) is an approach used to supplement, improve, and support the communication of those with speech or language impairments. We developed an AAC device for diverse approaches, using an electromyographic (EMG) switch and a necklace-type button switch. The EMG switch comprised an EMG signal processor and a switch interface processor. EMG signals were processed using an electrode through the stages of signal acquisition, amplification, filtering, rectification, and smoothing. In the switch interface processor, the microprocessor determined the switch as ON or OFF in response to an input EMG signal and then converted the EMG signal into a keyboard signal, which was transmitted to a smart device via Bluetooth communication. A similar transmission process was used for the necklace-type button switch, and switch signals were input and processed with general-purpose input/output. The first and second feasibility tests for the EMG switch and button switch were conducted in a total of three test sessions. The result of the feasibility test indicated that the major inconvenience and desired improvement associated with the EMG switch were the intricacy of the AAC device settings. The major inconveniences and desired improvements for the necklace-type button switch involved device shifting, volume and weight, and inconvenience in fixing the switch in various directions. Thus, based on the first and second feasibility tests, we developed an additional device. Finally, the EMG switch and necklace-type button switch developed to remedy the inconveniencies had high feasibility.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.