Neda Salsabili, Joaquín Santiago López, María Isabel Prieto Barrio
{"title":"Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling.","authors":"Neda Salsabili, Joaquín Santiago López, María Isabel Prieto Barrio","doi":"10.1007/s13246-019-00768-z","DOIUrl":null,"url":null,"abstract":"<p><p>The human lumbar spine incorporates the best joints in nature due to its optimal static and dynamic behavior against the internal and external loads. Developing an elemental structure based on this joint requires simplification in terms of the materials employed by keeping the mechanical and anatomical behaviors of the human lumbar spine. In the present study, the finite element (FE) of two motion segments of the human lumbar spine (L3/L4) was developed based on the CT scan data as the base for vertebrae geometry, verified geometry properties for another part of two motion segments, and combination of materials and loads obtained from the validated resources. Then, simplification occurred in four continuous steps such as omitting the annual fibers of annual matrix, representing the material of the annual matrix to the nucleus, demonstrating the material of annual matrix to the endplates too, and omitting the trabecular part of vertebrae. The present study aimed to propose the method for developing the basic structure of the human lumbar spine by simplifying its materials in the above-mentioned steps, analyzing the biomechanical effects of these four steps in terms of their internal and external responses, and validating the data obtained from the FE method. The validated simplified way introduced in this study can be used for future research by making implants, prosthesis, and modeling based on the human lumbar spine in other fields such as industrial design, building structures, or joints, which results in making the model easier, cheaper, and more effective.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 3","pages":"689-700"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-019-00768-z","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00768-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
The human lumbar spine incorporates the best joints in nature due to its optimal static and dynamic behavior against the internal and external loads. Developing an elemental structure based on this joint requires simplification in terms of the materials employed by keeping the mechanical and anatomical behaviors of the human lumbar spine. In the present study, the finite element (FE) of two motion segments of the human lumbar spine (L3/L4) was developed based on the CT scan data as the base for vertebrae geometry, verified geometry properties for another part of two motion segments, and combination of materials and loads obtained from the validated resources. Then, simplification occurred in four continuous steps such as omitting the annual fibers of annual matrix, representing the material of the annual matrix to the nucleus, demonstrating the material of annual matrix to the endplates too, and omitting the trabecular part of vertebrae. The present study aimed to propose the method for developing the basic structure of the human lumbar spine by simplifying its materials in the above-mentioned steps, analyzing the biomechanical effects of these four steps in terms of their internal and external responses, and validating the data obtained from the FE method. The validated simplified way introduced in this study can be used for future research by making implants, prosthesis, and modeling based on the human lumbar spine in other fields such as industrial design, building structures, or joints, which results in making the model easier, cheaper, and more effective.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.