A bionic stretchable nanogenerator for underwater sensing and energy harvesting.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2019-06-19 DOI:10.1038/s41467-019-10433-4
Yang Zou, Puchuan Tan, Bojing Shi, Han Ouyang, Dongjie Jiang, Zhuo Liu, Hu Li, Min Yu, Chan Wang, Xuecheng Qu, Luming Zhao, Yubo Fan, Zhong Lin Wang, Zhou Li
{"title":"A bionic stretchable nanogenerator for underwater sensing and energy harvesting.","authors":"Yang Zou,&nbsp;Puchuan Tan,&nbsp;Bojing Shi,&nbsp;Han Ouyang,&nbsp;Dongjie Jiang,&nbsp;Zhuo Liu,&nbsp;Hu Li,&nbsp;Min Yu,&nbsp;Chan Wang,&nbsp;Xuecheng Qu,&nbsp;Luming Zhao,&nbsp;Yubo Fan,&nbsp;Zhong Lin Wang,&nbsp;Zhou Li","doi":"10.1038/s41467-019-10433-4","DOIUrl":null,"url":null,"abstract":"<p><p>Soft wearable electronics for underwater applications are of interest, but depend on the development of a waterproof, long-term sustainable power source. In this work, we report a bionic stretchable nanogenerator for underwater energy harvesting that mimics the structure of ion channels on the cytomembrane of electrocyte in an electric eel. Combining the effects of triboelectrification caused by flowing liquid and principles of electrostatic induction, the bionic stretchable nanogenerator can harvest mechanical energy from human motion underwater and output an open-circuit voltage over 10 V. Underwater applications of a bionic stretchable nanogenerator have also been demonstrated, such as human body multi-position motion monitoring and an undersea rescue system. The advantages of excellent flexibility, stretchability, outstanding tensile fatigue resistance (over 50,000 times) and underwater performance make the bionic stretchable nanogenerator a promising sustainable power source for the soft wearable electronics used underwater.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":" ","pages":"2695"},"PeriodicalIF":15.7000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41467-019-10433-4","citationCount":"360","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-019-10433-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 360

Abstract

Soft wearable electronics for underwater applications are of interest, but depend on the development of a waterproof, long-term sustainable power source. In this work, we report a bionic stretchable nanogenerator for underwater energy harvesting that mimics the structure of ion channels on the cytomembrane of electrocyte in an electric eel. Combining the effects of triboelectrification caused by flowing liquid and principles of electrostatic induction, the bionic stretchable nanogenerator can harvest mechanical energy from human motion underwater and output an open-circuit voltage over 10 V. Underwater applications of a bionic stretchable nanogenerator have also been demonstrated, such as human body multi-position motion monitoring and an undersea rescue system. The advantages of excellent flexibility, stretchability, outstanding tensile fatigue resistance (over 50,000 times) and underwater performance make the bionic stretchable nanogenerator a promising sustainable power source for the soft wearable electronics used underwater.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于水下传感和能量收集的仿生可伸缩纳米发电机。
用于水下应用的软性可穿戴电子设备令人感兴趣,但这取决于防水、长期可持续电源的发展。在这项工作中,我们报道了一种用于水下能量收集的仿生可拉伸纳米发电机,它模仿了电鳗细胞膜上离子通道的结构。结合流动液体产生的摩擦电效应和静电感应原理,仿生可拉伸纳米发电机可以从水下人体运动中获取机械能,并输出超过10 V的开路电压。仿生可伸缩纳米发电机在水下的应用也得到了演示,如人体多位置运动监测和水下救援系统。优异的柔韧性、可拉伸性、优异的抗拉伸疲劳性能(超过5万次)和水下性能等优点,使仿生可拉伸纳米发电机成为水下使用的柔性可穿戴电子产品的有前途的可持续电源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Direct aluminium-alloy upcycling from entire end-of life vehicles. Hyperbolic localized plasmons and twist-induced chirality in an anisotropic 2D material. dHyperCas12a enables multiplexed CRISPRi screens Kilowatt-scale alkali-cation-free CO2 electrolysis via accelerating mass transfer A missense variant in ASCL5 leads to lobodontia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1