Drug screening in Drosophila; why, when, and when not?

Q1 Biochemistry, Genetics and Molecular Biology Wiley Interdisciplinary Reviews: Developmental Biology Pub Date : 2019-11-01 Epub Date: 2019-05-05 DOI:10.1002/wdev.346
Tin Tin Su
{"title":"Drug screening in Drosophila; why, when, and when not?","authors":"Tin Tin Su","doi":"10.1002/wdev.346","DOIUrl":null,"url":null,"abstract":"<p><p>The best global seller among oncology drugs in 2018 is lenalidomide, an analog of thalidomide. It took 53 years and a circuitous route from the discovery of thalidomide to approval of an analog for use in treatment of cancer. We understand now a lot more about the genetic and molecular basis of diseases than we did in 1953 when thalidomide was discovered. We have also no shortage of chemical libraries with hundreds of thousands of compounds, both synthetic and natural. What we need are better ways to search among these rich resources for compounds with the potential to do what we want them to do. This review summarizes examples from the literature that make Drosophila melanogaster a good model to screen for drugs, and discusses knowledge gaps and technical challenges that make Drosophila models not as widely used as they could or should be. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"8 6","pages":"e346"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.346","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 26

Abstract

The best global seller among oncology drugs in 2018 is lenalidomide, an analog of thalidomide. It took 53 years and a circuitous route from the discovery of thalidomide to approval of an analog for use in treatment of cancer. We understand now a lot more about the genetic and molecular basis of diseases than we did in 1953 when thalidomide was discovered. We have also no shortage of chemical libraries with hundreds of thousands of compounds, both synthetic and natural. What we need are better ways to search among these rich resources for compounds with the potential to do what we want them to do. This review summarizes examples from the literature that make Drosophila melanogaster a good model to screen for drugs, and discusses knowledge gaps and technical challenges that make Drosophila models not as widely used as they could or should be. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇药物筛选;为什么,什么时候,什么时候不是?
2018年全球最畅销的肿瘤药物是沙利度胺的类似物来那度胺。从发现沙利度胺到批准一种类似药物用于治疗癌症,经历了53年的曲折历程。与1953年发现沙利度胺时相比,我们现在对疾病的遗传和分子基础有了更多的了解。我们也不缺化学文库,里面有成千上万的化合物,既有合成的,也有天然的。我们需要的是更好的方法,在这些丰富的资源中寻找具有我们想要的功能的化合物。这篇综述总结了文献中使果蝇成为药物筛选良好模型的例子,并讨论了使果蝇模型不能得到广泛应用的知识空白和技术挑战。本文分类如下:技术>细胞、组织和动物表型分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
期刊最新文献
Zebrafish models of acute leukemias: Current models and future directions. The macro and micro of chromosome conformation capture. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. Single-cell RNA sequencing in Drosophila: Technologies and applications. Schwann cell development: From neural crest to myelin sheath.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1