Corrosion engineering approach to rapidly prepare Ni(Fe)OOH/Ni(Fe)Sx nanosheet arrays for efficient water oxidation†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2023-02-04 DOI:10.1039/D2TA06319K
Mingyue Chen, Wenhui Li, Yu Lu, Pengcheng Qi, Hao Wu, Gaofu Liu, Yue Zhao and Yiwen Tang
{"title":"Corrosion engineering approach to rapidly prepare Ni(Fe)OOH/Ni(Fe)Sx nanosheet arrays for efficient water oxidation†","authors":"Mingyue Chen, Wenhui Li, Yu Lu, Pengcheng Qi, Hao Wu, Gaofu Liu, Yue Zhao and Yiwen Tang","doi":"10.1039/D2TA06319K","DOIUrl":null,"url":null,"abstract":"<p >The Ni–Fe composite catalyst has received in-depth research attention due to high intrinsic activity in electrochemical water splitting applications. Corrosion engineering is considered an effective strategy for preparing large-scale Ni–Fe composites to match industrial electrocatalytic electrolyzers. Here, we demonstrate an efficient corrosion strategy to prepare defect-rich Ni(Fe)OOH/Ni(Fe)S<small><sub><em>x</em></sub></small> nanosheet arrays on a NiFe foam within 10 min. The corrosion solution we proposed (containing (NH<small><sub>4</sub></small>)<small><sub>2</sub></small>S<small><sub>2</sub></small>O<small><sub>8</sub></small>, (NH<small><sub>2</sub></small>)<small><sub>2</sub></small>CS, and FeCl<small><sub>3</sub></small>) has strong oxidizing properties, which releases a large amount of heat when it corrodes the Ni–Fe foam. The heat promotes the hydrolysis of (NH<small><sub>2</sub></small>)<small><sub>2</sub></small>CS and creates an alkaline environment for the rapid growth of Ni–Fe composites. Experimental results reveal that Ni(Fe)S<small><sub><em>x</em></sub></small> plays a crucial role in enhancing the oxygen evolution reaction performance of Ni(Fe)OOH/Ni(Fe)S<small><sub><em>x</em></sub></small>. Therefore, Ni(Fe)OOH/Ni(Fe)S<small><sub><em>x</em></sub></small> exhibits remarkable catalytic activity with low overpotentials of 227 and 313 mV to afford current densities of 10 and 1000 mA cm<small><sup>?2</sup></small>, respectively. Under 270 mV overpotential, the intrinsic catalytic activity of Ni(Fe)OOH/Ni(Fe)S<small><sub><em>x</em></sub></small> is 24.65-fold, 21.09-fold, and 52.21-fold that of FeOOH/FeS<small><sub><em>x</em></sub></small>, NiOOH/NiS<small><sub><em>x</em></sub></small>, and Ni(Fe)OOH, respectively. Moreover, large-scale Ni(Fe)OOH/Ni(Fe)S<small><sub><em>x</em></sub></small> electrode materials are prepared with a size of 10 × 10 cm<small><sup>2</sup></small> on a NiFe foam, implying the huge potential for practical applications. This work offers a new perspective on designing large-scale and highly active oxygen evolution catalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 9","pages":" 4608-4618"},"PeriodicalIF":10.7000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ta/d2ta06319k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

The Ni–Fe composite catalyst has received in-depth research attention due to high intrinsic activity in electrochemical water splitting applications. Corrosion engineering is considered an effective strategy for preparing large-scale Ni–Fe composites to match industrial electrocatalytic electrolyzers. Here, we demonstrate an efficient corrosion strategy to prepare defect-rich Ni(Fe)OOH/Ni(Fe)Sx nanosheet arrays on a NiFe foam within 10 min. The corrosion solution we proposed (containing (NH4)2S2O8, (NH2)2CS, and FeCl3) has strong oxidizing properties, which releases a large amount of heat when it corrodes the Ni–Fe foam. The heat promotes the hydrolysis of (NH2)2CS and creates an alkaline environment for the rapid growth of Ni–Fe composites. Experimental results reveal that Ni(Fe)Sx plays a crucial role in enhancing the oxygen evolution reaction performance of Ni(Fe)OOH/Ni(Fe)Sx. Therefore, Ni(Fe)OOH/Ni(Fe)Sx exhibits remarkable catalytic activity with low overpotentials of 227 and 313 mV to afford current densities of 10 and 1000 mA cm?2, respectively. Under 270 mV overpotential, the intrinsic catalytic activity of Ni(Fe)OOH/Ni(Fe)Sx is 24.65-fold, 21.09-fold, and 52.21-fold that of FeOOH/FeSx, NiOOH/NiSx, and Ni(Fe)OOH, respectively. Moreover, large-scale Ni(Fe)OOH/Ni(Fe)Sx electrode materials are prepared with a size of 10 × 10 cm2 on a NiFe foam, implying the huge potential for practical applications. This work offers a new perspective on designing large-scale and highly active oxygen evolution catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腐蚀工程方法快速制备Ni(Fe)OOH/Ni(Fe)Sx纳米片阵列用于高效水氧化†
Ni-Fe复合催化剂由于具有较高的本禀活性,在电化学水分解中得到了广泛的应用。腐蚀工程被认为是制备大规模Ni-Fe复合材料以匹配工业电催化电解槽的有效策略。在这里,我们展示了一种有效的腐蚀策略,可以在10分钟内在NiFe泡沫上制备出富含缺陷的Ni(Fe)OOH/Ni(Fe)Sx纳米片阵列。我们提出的腐蚀溶液(含有(NH4)2S2O8, (NH2)2CS和FeCl3)具有强氧化性,当它腐蚀Ni - Fe泡沫时释放出大量的热量。高温促进了(NH2)2CS的水解,为Ni-Fe复合材料的快速生长创造了碱性环境。实验结果表明,Ni(Fe)Sx对提高Ni(Fe)OOH/Ni(Fe)Sx的析氧反应性能起着至关重要的作用。因此,Ni(Fe)OOH/Ni(Fe)Sx表现出显著的催化活性,其过电位为227和313 mV,电流密度为10和1000 mA cm?2,分别。在270 mV过电位下,Ni(Fe)OOH/Ni(Fe)Sx的本特征催化活性分别是FeOOH/FeSx、NiOOH/NiSx和Ni(Fe)OOH的24.65倍、21.09倍和52.21倍。此外,在NiFe泡沫上制备了尺寸为10 × 10 cm2的大型Ni(Fe)OOH/Ni(Fe)Sx电极材料,具有巨大的实际应用潜力。这项工作为设计大规模、高活性的析氧催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
A metal-, solvent-, halogen-, and additive-free catalysis for CO2 fixation by carbon dots Fluorinated Imine Modulating Efficient Sulfur Redox Kinetics and Stable Solid Electrolyte Interphase in Lithium-Sulfur Batteries Self-healing, deformation-resistant MXene double-network hydrogel for stable solar-driven interfacial evaporation Rapid synthesis of an aluminum-doped ultrathin Rux–RuO2 heterostructure optimized through combined wet–dry microwave radiation for efficient acidic and alkaline overall water splitting Bio-based and recyclable adhesives based on β-hydroxyester bonds and hydrogen bonds via molecular dynamics simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1