Artificially enriching the training dataset of statistical shape models via constrained cage-based deformation.

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2019-06-01 Epub Date: 2019-05-13 DOI:10.1007/s13246-019-00759-0
Samaneh Alimohamadi Gilakjan, Javad Hasani Bidgoli, Reza Aghaizadeh Zorofi, Alireza Ahmadian
{"title":"Artificially enriching the training dataset of statistical shape models via constrained cage-based deformation.","authors":"Samaneh Alimohamadi Gilakjan,&nbsp;Javad Hasani Bidgoli,&nbsp;Reza Aghaizadeh Zorofi,&nbsp;Alireza Ahmadian","doi":"10.1007/s13246-019-00759-0","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of a powerful statistical shape model (SSM) requires a rich training dataset that includes the large variety of complex anatomical topologies. The lack of real data causes most SSMs unable to generalize possible unseen instances. Artificial enrichment of training data is one of the methods proposed to address this issue. In this paper, we introduce a novel technique called constrained cage-based deformation (CCBD), which has the ability to produce unlimited artificial data that promises to enrich variability within the training dataset. The proposed method is a two-step algorithm: in the first step, it moves a few handles together, and in the second step transfers the displacements of these handles to the base mesh vertices to generate a real new instance. The evaluation of statistical characteristics of the CCBD confirms that our proposed technique outperforms notable data-generating methods quantitatively, in terms of the generalization ability, and with respect to specificity.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 2","pages":"573-584"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-019-00759-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00759-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of a powerful statistical shape model (SSM) requires a rich training dataset that includes the large variety of complex anatomical topologies. The lack of real data causes most SSMs unable to generalize possible unseen instances. Artificial enrichment of training data is one of the methods proposed to address this issue. In this paper, we introduce a novel technique called constrained cage-based deformation (CCBD), which has the ability to produce unlimited artificial data that promises to enrich variability within the training dataset. The proposed method is a two-step algorithm: in the first step, it moves a few handles together, and in the second step transfers the displacements of these handles to the base mesh vertices to generate a real new instance. The evaluation of statistical characteristics of the CCBD confirms that our proposed technique outperforms notable data-generating methods quantitatively, in terms of the generalization ability, and with respect to specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束笼的变形,人工丰富统计形状模型训练数据集。
构建一个强大的统计形状模型(SSM)需要一个丰富的训练数据集,其中包括各种复杂的解剖拓扑结构。缺乏真实数据导致大多数ssm无法泛化可能的未见实例。人工丰富训练数据是解决这一问题的方法之一。在本文中,我们介绍了一种称为约束笼基变形(CCBD)的新技术,该技术能够产生无限的人工数据,从而丰富训练数据集中的可变性。该方法是一个两步算法:第一步,将几个句柄移动到一起,第二步,将这些句柄的位移转移到基本网格顶点上,以生成一个真正的新实例。对CCBD统计特征的评估证实,我们提出的技术在泛化能力和特异性方面在数量上优于显著的数据生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1