Interferon in the CNS.

Q1 Medicine Neurosignals Pub Date : 2019-01-01 DOI:10.33594/000000197
Hilal Bhat, Karl S Lang, Cornelia Hardt, Judith Lang
{"title":"Interferon in the CNS.","authors":"Hilal Bhat,&nbsp;Karl S Lang,&nbsp;Cornelia Hardt,&nbsp;Judith Lang","doi":"10.33594/000000197","DOIUrl":null,"url":null,"abstract":"<p><p>While the role of interferon during systemic disease is well known and its immune modulating functions and its role in antiviral activity were extensively studied, the role of IFN-I in the brain is less clear. Here we summarize the most important literature on IFN in homeostasis of the CNS and induction of an IFN response during viral infection in the brain. Furthermore, we present work on the roles of IFN in the developing brain as well as during inflammation in the brain. Lastly, we aim to enlighten the functions of IFN on the blood-brain barrier as well as circulation and in cognitive and psychological functions and degeneration. In short, CNS astrocytes produce IFN-β, which is of high relevance for homeostasis in the brain. IFN-β regulates phagocytic removal of myelin debris by microglia. IFN-I limits the permeability of the blood-brain barrier. Disruption of the blood-brain barrier facilitates entrance of peripheral lymphocytes and inflammation. Viral infections during vulnerable phases of embryonic development cause severe fetal pathology and debilitating impairments to human infants. The roles of IFN in these scenarios are diverse and include deficits due to overproduction of IFN during the developmental stage of the brain as seems to be the case in pseudo-TORCH2.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

Abstract

While the role of interferon during systemic disease is well known and its immune modulating functions and its role in antiviral activity were extensively studied, the role of IFN-I in the brain is less clear. Here we summarize the most important literature on IFN in homeostasis of the CNS and induction of an IFN response during viral infection in the brain. Furthermore, we present work on the roles of IFN in the developing brain as well as during inflammation in the brain. Lastly, we aim to enlighten the functions of IFN on the blood-brain barrier as well as circulation and in cognitive and psychological functions and degeneration. In short, CNS astrocytes produce IFN-β, which is of high relevance for homeostasis in the brain. IFN-β regulates phagocytic removal of myelin debris by microglia. IFN-I limits the permeability of the blood-brain barrier. Disruption of the blood-brain barrier facilitates entrance of peripheral lymphocytes and inflammation. Viral infections during vulnerable phases of embryonic development cause severe fetal pathology and debilitating impairments to human infants. The roles of IFN in these scenarios are diverse and include deficits due to overproduction of IFN during the developmental stage of the brain as seems to be the case in pseudo-TORCH2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中枢神经系统中的干扰素。
虽然干扰素在全体性疾病中的作用众所周知,其免疫调节功能及其在抗病毒活性中的作用已被广泛研究,但IFN-I在大脑中的作用尚不清楚。在这里,我们总结了IFN在中枢神经系统稳态和大脑病毒感染期间诱导IFN反应中的最重要的文献。此外,我们介绍了IFN在发育中的大脑以及大脑炎症中的作用。最后,我们旨在揭示干扰素在血脑屏障和循环中的作用,以及在认知和心理功能和退化中的作用。简而言之,中枢神经系统星形胶质细胞产生IFN-β,这与大脑的内稳态高度相关。IFN-β调节小胶质细胞吞噬髓磷脂碎片的清除。IFN-I限制了血脑屏障的通透性。血脑屏障的破坏促进了外周淋巴细胞的进入和炎症。在胚胎发育的脆弱阶段,病毒感染会导致严重的胎儿病理和人类婴儿的衰弱性损伤。IFN在这些情况下的作用是多种多样的,包括在大脑发育阶段由于IFN过量产生而导致的缺陷,就像伪torch2中的情况一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurosignals
Neurosignals 医学-神经科学
CiteScore
3.40
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.
期刊最新文献
Aberrant Hippocampal Neuroregenerative Plasticity in Schizophrenia: Reactive Neuroblastosis as a Possible Pathocellular Mechanism of Hallucination. A Narrative Review - Therapy Options and Therapy Failure in Retinoblastoma. Therapy Failure and Resistance Mechanism in Eyelid and Ocular Surface Tumors. Therapy Resistance and Failure in Uveal Melanoma Interventional Radiotherapy (Brachytherapy) in Eyelid and Ocular Surface Tumors: A Review for Treatment of Naïve and Recurrent Malignancies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1