Attempts to develop an enzyme converting DHIV to KIV.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2019-12-31 DOI:10.1093/protein/gzz042
Kenji Oki, Frederick S Lee, Stephen L Mayo
{"title":"Attempts to develop an enzyme converting DHIV to KIV.","authors":"Kenji Oki,&nbsp;Frederick S Lee,&nbsp;Stephen L Mayo","doi":"10.1093/protein/gzz042","DOIUrl":null,"url":null,"abstract":"<p><p>Dihydroxy-acid dehydratase (DHAD) catalyzes the dehydration of R-2,3-dihydroxyisovalerate (DHIV) to 2-ketoisovalerate (KIV) using an Fe-S cluster as a cofactor, which is sensitive to oxidation and expensive to synthesize. In contrast, sugar acid dehydratases catalyze the same chemical reactions using a magnesium ion. Here, we attempted to substitute the high-cost DHAD with a cost-efficient engineered sugar acid dehydratase using computational protein design (CPD). First, we tried without success to modify the binding pocket of a sugar acid dehydratase to accommodate the smaller, more hydrophobic DHIV. Then, we used a chemically activated substrate analog to react with sugar acid dehydratases or other enolase superfamily enzymes. Mandelate racemase from Pseudomonas putida (PpManR) and the putative sugar acid dehydratase from Salmonella typhimurium (StPutD) showed beta-elimination activity towards chlorolactate (CLD). CPD combined with medium-throughput selection improved the PpManR kcat/KM for CLD by four-fold. However, these enzyme variants did not show dehydration activity towards DHIV. Lastly, assuming phosphorylation could also be a good activation mechanism, we found that mevalonate-3-kinase (M3K) from Picrophilus torridus (PtM3K) exhibited adenosine triphosphate (ATP) hydrolysis activity when mixed with DHIV, indicating phosphorylation activity towards DHIV. Engineering PpManR or StPutD to accept 3-phospho-DHIV as a substrate was performed, but no variants with the desired activity were obtained.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"32 6","pages":"261-270"},"PeriodicalIF":2.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzz042","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzz042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Dihydroxy-acid dehydratase (DHAD) catalyzes the dehydration of R-2,3-dihydroxyisovalerate (DHIV) to 2-ketoisovalerate (KIV) using an Fe-S cluster as a cofactor, which is sensitive to oxidation and expensive to synthesize. In contrast, sugar acid dehydratases catalyze the same chemical reactions using a magnesium ion. Here, we attempted to substitute the high-cost DHAD with a cost-efficient engineered sugar acid dehydratase using computational protein design (CPD). First, we tried without success to modify the binding pocket of a sugar acid dehydratase to accommodate the smaller, more hydrophobic DHIV. Then, we used a chemically activated substrate analog to react with sugar acid dehydratases or other enolase superfamily enzymes. Mandelate racemase from Pseudomonas putida (PpManR) and the putative sugar acid dehydratase from Salmonella typhimurium (StPutD) showed beta-elimination activity towards chlorolactate (CLD). CPD combined with medium-throughput selection improved the PpManR kcat/KM for CLD by four-fold. However, these enzyme variants did not show dehydration activity towards DHIV. Lastly, assuming phosphorylation could also be a good activation mechanism, we found that mevalonate-3-kinase (M3K) from Picrophilus torridus (PtM3K) exhibited adenosine triphosphate (ATP) hydrolysis activity when mixed with DHIV, indicating phosphorylation activity towards DHIV. Engineering PpManR or StPutD to accept 3-phospho-DHIV as a substrate was performed, but no variants with the desired activity were obtained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
试图开发一种将hiv转化为KIV的酶。
二羟基酸脱水酶(DHAD)以Fe-S簇为辅助因子,催化r -2,3-二羟基异戊酸(DHIV)脱水生成2-酮异戊酸(KIV),该酶对氧化敏感,合成成本高。相反,糖酸脱水酶用镁离子催化同样的化学反应。在这里,我们尝试使用计算蛋白设计(CPD)将高成本的DHAD替换为具有成本效益的工程糖酸脱水酶。首先,我们尝试修改糖酸脱水酶的结合袋以适应更小、更疏水的DHIV,但没有成功。然后,我们使用化学活化的底物类似物与糖酸脱水酶或其他烯醇化酶超家族酶反应。腐臭假单胞菌的曼德拉酸消旋酶(PpManR)和鼠伤寒沙门氏菌的糖酸脱水酶(StPutD)对氯乳酸(CLD)具有β -消除活性。CPD结合中通量选择将PpManR CLD的kcat/KM提高了4倍。然而,这些酶变体没有表现出对hiv的脱水活性。最后,假设磷酸化也可能是一个很好的激活机制,我们发现来自Picrophilus torridus (PtM3K)的mevalonate-3-kinase (M3K)在与DHIV混合时表现出三磷酸腺苷(ATP)水解活性,表明磷酸化对DHIV有活性。对PpManR或StPutD进行工程改造,使其接受3-phospho-DHIV作为底物,但没有获得具有所需活性的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
Optimized single-cell gates for yeast display screening. Engineering of a lysosomal-targeted GAA enzyme. TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1