The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut.

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES Journal of Toxicology and Environmental Health-Part B-Critical Reviews Pub Date : 2020-01-01 Epub Date: 2020-01-10 DOI:10.1080/10937404.2019.1710914
Yuqiang Bi, Andrew K Marcus, Hervé Robert, Rosa Krajmalnik-Brown, Bruce E Rittmann, Paul Westerhoff, Marie-Hélène Ropers, Muriel Mercier-Bonin
{"title":"The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut.","authors":"Yuqiang Bi,&nbsp;Andrew K Marcus,&nbsp;Hervé Robert,&nbsp;Rosa Krajmalnik-Brown,&nbsp;Bruce E Rittmann,&nbsp;Paul Westerhoff,&nbsp;Marie-Hélène Ropers,&nbsp;Muriel Mercier-Bonin","doi":"10.1080/10937404.2019.1710914","DOIUrl":null,"url":null,"abstract":"<p><p>Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from \"real\" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on <i>in vitro</i> and <i>in vivo</i> rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"23 2","pages":"69-89"},"PeriodicalIF":6.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2019.1710914","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2019.1710914","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 16

Abstract

Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膳食银纳米颗粒、肠道粘液和微生物群的复杂谜团。
目前,数百种含有银纳米颗粒(AgNPs)的消费和商业产品被用于食品、个人护理产品、制药和许多其他应用。人类对AgNPs的暴露包括口服、吸入和皮肤接触。本综述的目的是关注口服AgNPs,有意的和偶然的,其中众所周知的抗菌特性可能影响胃肠道(GIT)中的微生物组和粘液。这篇重要的综述总结了已知的AgNPs对肠道稳态的影响。了解AgNPs的形式及其在消化前和消化过程中的物理化学特性是至关重要的。例如,实验室合成的AgNPs不同于用作食品添加剂和膳食补充剂的“真正的”可摄取AgNPs。同样,肠道环境也会改变作为AgNPs被摄入的银的化学和物理状态。在体外和体内啮齿类动物和人类的新研究表明,AgNPs、肠道微生物群和上皮粘液之间存在复杂的多向关系。可能有必要超越目前的描述性方法,采用基于建模的生态系统方法,定量地整合微生物群、宿主因素(如粘液)和环境因素(包括基于生活方式的压力源)之间的时空相互作用。建议未来的研究:(1)利用更具代表性的AgNPs,关注微生物/黏液的相互作用,(2)评估长期和纵向条件下环境应激源的影响,(3)利用定量模型进行整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
期刊最新文献
Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1