Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer.

Q2 Biochemistry, Genetics and Molecular Biology High-Throughput Pub Date : 2020-01-10 DOI:10.3390/ht9010001
Veronica Zelli, Chiara Compagnoni, Katia Cannita, Roberta Capelli, Carlo Capalbo, Mauro Di Vito Nolfi, Edoardo Alesse, Francesca Zazzeroni, Alessandra Tessitore
{"title":"Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer.","authors":"Veronica Zelli,&nbsp;Chiara Compagnoni,&nbsp;Katia Cannita,&nbsp;Roberta Capelli,&nbsp;Carlo Capalbo,&nbsp;Mauro Di Vito Nolfi,&nbsp;Edoardo Alesse,&nbsp;Francesca Zazzeroni,&nbsp;Alessandra Tessitore","doi":"10.3390/ht9010001","DOIUrl":null,"url":null,"abstract":"<p><p>Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010001","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht9010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 20

Abstract

Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一代测序技术在家族性乳腺癌/卵巢癌分析中的应用
下一代测序(NGS)为医学遗传学领域提供了一个强大的工具,允许人们进行多基因分析并对整个外显子组(WES),转录组或基因组(WGS)进行测序。生成的高通量数据特别适合于加强对复杂的多基因疾病(如癌症)的遗传基础的理解。在各种类型的肿瘤中,具有家族性易感性的肿瘤对分离新的基因或基因变异非常感兴趣,这些基因或变异在种系水平上可检测到,并参与癌症的发病机制。识别新的遗传因素将有很大的转化价值,帮助临床医生确定风险和预防策略。在这方面,尽管已经发现了几个渗透性较低的基因(如ATM, PALB2),但已知大多数具有家族性易感性的乳腺/卵巢病例,缺乏高渗透性BRCA1和BRCA2基因(非brca)的变体,仍然无法解释。在这种情况下,NGS技术为发现家族性乳腺癌/卵巢癌的新因素提供了强有力的工具。本文就NGS基因面板、WES和WGS基因面板在家族性乳腺癌/卵巢癌中的应用现状进行综述和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High-Throughput
High-Throughput Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays
期刊最新文献
Health Impact and Therapeutic Manipulation of the Gut Microbiome. Influence of the Ovine Genital Tract Microbiota on the Species Artificial Insemination Outcome. A Pilot Study in Commercial Sheep Farms. Dark Proteome Database: Studies on Disorder. Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella. Genetic Counseling and NGS Screening for Recessive LGMD2A Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1