Overview of MARCM-Related Technologies in Drosophila Neurobiological Research

Q2 Neuroscience Current Protocols in Neuroscience Pub Date : 2020-01-23 DOI:10.1002/cpns.90
Tsai-Chi Hsu, Kai-Yuan Ku, Hung-Chang Shen, Hung-Hsiang Yu
{"title":"Overview of MARCM-Related Technologies in Drosophila Neurobiological Research","authors":"Tsai-Chi Hsu,&nbsp;Kai-Yuan Ku,&nbsp;Hung-Chang Shen,&nbsp;Hung-Hsiang Yu","doi":"10.1002/cpns.90","DOIUrl":null,"url":null,"abstract":"<p><span>M</span>osaic <span>a</span>nalysis with a <span>r</span>epressible <span>c</span>ell <span>m</span>arker (MARCM)–related technologies are positive genetic mosaic labeling systems that have been widely applied in studies of <i>Drosophila</i> brain development and neural circuit formation to identify diverse neuronal types, reconstruct neural lineages, and investigate the function of genes and molecules. Two types of MARCM-related technologies have been developed: single-colored and twin-colored. Single-colored MARCM technologies label one of two twin daughter cells in otherwise unmarked background tissues through site-specific recombination of homologous chromosomes during mitosis of progenitors. On the other hand, twin-colored genetic mosaic technologies label both twin daughter cells with two distinct colors, enabling the retrieval of useful information from both progenitor-derived cells and their subsequent clones. In this overview, we describe the principles and usage guidelines for MARCM-related technologies in order to help researchers employ these powerful genetic mosaic systems in their investigations of intricate neurobiological topics. © 2020 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.90","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpns.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2

Abstract

Mosaic analysis with a repressible cell marker (MARCM)–related technologies are positive genetic mosaic labeling systems that have been widely applied in studies of Drosophila brain development and neural circuit formation to identify diverse neuronal types, reconstruct neural lineages, and investigate the function of genes and molecules. Two types of MARCM-related technologies have been developed: single-colored and twin-colored. Single-colored MARCM technologies label one of two twin daughter cells in otherwise unmarked background tissues through site-specific recombination of homologous chromosomes during mitosis of progenitors. On the other hand, twin-colored genetic mosaic technologies label both twin daughter cells with two distinct colors, enabling the retrieval of useful information from both progenitor-derived cells and their subsequent clones. In this overview, we describe the principles and usage guidelines for MARCM-related technologies in order to help researchers employ these powerful genetic mosaic systems in their investigations of intricate neurobiological topics. © 2020 by John Wiley & Sons, Inc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇神经生物学研究中marcm相关技术综述
基于抑制细胞标记的镶嵌分析(MARCM)相关技术是一种积极的遗传镶嵌标记系统,已被广泛应用于果蝇大脑发育和神经回路形成的研究中,以识别不同的神经元类型,重建神经谱系,研究基因和分子的功能。目前已开发出两种与marcm相关的技术:单色和双色。单色MARCM技术通过在祖细胞有丝分裂过程中同源染色体的位点特异性重组来标记其他未标记背景组织中的两个双胞胎子细胞中的一个。另一方面,双色遗传镶嵌技术用两种不同的颜色标记双胞胎子细胞,使从祖细胞及其后续克隆中检索有用的信息成为可能。在这篇综述中,我们描述了marcm相关技术的原理和使用指南,以帮助研究人员在复杂的神经生物学主题的研究中使用这些强大的遗传马赛克系统。©2020 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Neuroscience
Current Protocols in Neuroscience Neuroscience-Neuroscience (all)
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Neuroscience is a one-stop resource for finding and adapting the best models and methods for all types of neuroscience experiments. Updated every three months in all formats, CPNS is constantly evolving to keep pace with the very latest discoveries and developments. A year of these quarterly updates is included in the initial CPNS purchase price.
期刊最新文献
Simultaneous Ca2+ Imaging and Optogenetic Stimulation of Cortical Astrocytes in Adult Murine Brain Slices Automated Two-Chamber Operon ID/ED Task for Mice Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model. Whole-Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1