Jan Werner, Jashar Arian, Ida Bernhardt, Stefanie Ryglewski, Carsten Duch
{"title":"Differential localization of voltage-gated potassium channels during <i>Drosophila</i> metamorphosis.","authors":"Jan Werner, Jashar Arian, Ida Bernhardt, Stefanie Ryglewski, Carsten Duch","doi":"10.1080/01677063.2020.1715972","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal excitability is determined by the combination of different ion channels and their sub-neuronal localization. This study utilizes protein trap fly strains with endogenously tagged channels to analyze the spatial expression patterns of the four Shaker-related voltage-gated potassium channels, K<sub>v</sub>1-4, in the larval, pupal, and adult <i>Drosophila</i> ventral nerve cord. We find that all four channels (Shaker, K<sub>v</sub>1; Shab, K<sub>v</sub>2; Shaw, K<sub>v</sub>3; and Shal, K<sub>v</sub>4) each show different spatial expression patterns in the <i>Drosophila</i> ventral nerve cord and are predominantly targeted to different sub-neuronal compartments. Shaker is abundantly expressed in axons, Shab also localizes to axons but mostly in commissures, Shaw expression is restricted to distinct parts of neuropils, and Shal is found somatodendritically, but also in axons of identified motoneurons. During early pupal life expression of all four Shaker-related channels is markedly decreased with an almost complete shutdown of expression at early pupal stage 5 (∼30% through metamorphosis). Re-expression of K<sub>v</sub>1-4 channels at pupal stage 6 starts with abundant channel localization in neuronal somata, followed by channel targeting to the respective sub-neuronal compartments until late pupal life. The developmental time course of tagged K<sub>v</sub>1-4 channel expression corresponds with previously published data on developmental changes in single neuron physiology, thus indicating that protein trap fly strains are a useful tool to analyze developmental regulation of potassium channel expression. Finally, we take advantage of the large diameter of the giant fiber (GF) interneuron to map channel expression onto the axon and axon terminals of an identified interneuron. Shaker, Shaw, and Shal but not Shab channels localize to the non-myelinated GF axonal membrane and axon terminals. This study constitutes a first step toward systematically analyzing sub-neuronal potassium channel localization in <i>Drosophila</i>. Functional implications as well as similarities and differences to K<sub>v</sub>1-4 channel localization in mammalian neurons are discussed.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"34 1","pages":"133-150"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1715972","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2020.1715972","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Neuronal excitability is determined by the combination of different ion channels and their sub-neuronal localization. This study utilizes protein trap fly strains with endogenously tagged channels to analyze the spatial expression patterns of the four Shaker-related voltage-gated potassium channels, Kv1-4, in the larval, pupal, and adult Drosophila ventral nerve cord. We find that all four channels (Shaker, Kv1; Shab, Kv2; Shaw, Kv3; and Shal, Kv4) each show different spatial expression patterns in the Drosophila ventral nerve cord and are predominantly targeted to different sub-neuronal compartments. Shaker is abundantly expressed in axons, Shab also localizes to axons but mostly in commissures, Shaw expression is restricted to distinct parts of neuropils, and Shal is found somatodendritically, but also in axons of identified motoneurons. During early pupal life expression of all four Shaker-related channels is markedly decreased with an almost complete shutdown of expression at early pupal stage 5 (∼30% through metamorphosis). Re-expression of Kv1-4 channels at pupal stage 6 starts with abundant channel localization in neuronal somata, followed by channel targeting to the respective sub-neuronal compartments until late pupal life. The developmental time course of tagged Kv1-4 channel expression corresponds with previously published data on developmental changes in single neuron physiology, thus indicating that protein trap fly strains are a useful tool to analyze developmental regulation of potassium channel expression. Finally, we take advantage of the large diameter of the giant fiber (GF) interneuron to map channel expression onto the axon and axon terminals of an identified interneuron. Shaker, Shaw, and Shal but not Shab channels localize to the non-myelinated GF axonal membrane and axon terminals. This study constitutes a first step toward systematically analyzing sub-neuronal potassium channel localization in Drosophila. Functional implications as well as similarities and differences to Kv1-4 channel localization in mammalian neurons are discussed.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms