Rank correlation under categorical confounding.

Q2 Mathematics Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-09-15 DOI:10.1186/s40488-017-0076-1
Jean-François Plante
{"title":"Rank correlation under categorical confounding.","authors":"Jean-François Plante","doi":"10.1186/s40488-017-0076-1","DOIUrl":null,"url":null,"abstract":"<p><p>Rank correlation is invariant to bijective marginal transformations, but it is not immune to confounding. Assuming a categorical confounding variable is observed, the author proposes weighted coefficients of correlation for continuous variables developed within a larger framework based on copulas. While the weighting is clear under the assumption that the dependence is the same within each group implied by the confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients are derived and simulations are used to assess their finite sample properties.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0076-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0076-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Rank correlation is invariant to bijective marginal transformations, but it is not immune to confounding. Assuming a categorical confounding variable is observed, the author proposes weighted coefficients of correlation for continuous variables developed within a larger framework based on copulas. While the weighting is clear under the assumption that the dependence is the same within each group implied by the confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients are derived and simulations are used to assess their finite sample properties.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类混杂下的等级相关。
秩相关对双客观边缘变换是不变的,但也不能避免混淆。假设观察到一个分类混淆变量,作者提出了在基于copula的更大框架内开发的连续变量的加权相关系数。虽然在混杂因素暗示的每组内的依赖性相同的假设下,权重是明确的,但作者扩展了最小平均均方误差(MAMSE)权重,以便在组间的依赖性可能不同时借用组间的强度。推导了所提系数的渐近性质,并用模拟来评估它们的有限样本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A generalization to the log-inverse Weibull distribution and its applications in cancer research Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models Structural properties of generalised Planck distributions New class of Lindley distributions: properties and applications Tolerance intervals in statistical software and robustness under model misspecification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1