Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans.

Genes & Nutrition Pub Date : 2020-01-29 eCollection Date: 2020-01-01 DOI:10.1186/s12263-020-0659-1
Xiong Wang, Lin Zhang, Lei Zhang, Wenli Wang, Sihan Wei, Jie Wang, Huilian Che, Yali Zhang
{"title":"Effects of excess sugars and lipids on the growth and development of <i>Caenorhabditis elegans</i>.","authors":"Xiong Wang,&nbsp;Lin Zhang,&nbsp;Lei Zhang,&nbsp;Wenli Wang,&nbsp;Sihan Wei,&nbsp;Jie Wang,&nbsp;Huilian Che,&nbsp;Yali Zhang","doi":"10.1186/s12263-020-0659-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Excessive intake of carbohydrates and fats causes over-nutrition, leading to a variety of diseases and complications. Here, we characterized the effects of different types of sugar and lipids on the growth and development of <i>Caenorhabditis elegans</i>.</p><p><strong>Methods: </strong>We measured the lifespan, reproductive capacity, and length of nematodes after sugars and lipids treatment alone and co-treatment of sugars and lipids. Furthermore, we studied the mechanisms underlying the damage caused by high-sucrose and high-stearic acid on <i>C.elegans</i> by using transcriptome sequencing technology<b>.</b></p><p><strong>Results: </strong>The results showed that a certain concentration of sugar and lipid promoted the growth and development of nematodes. However, excessive sugars and lipids shortened the lifespan and length of nematodes and destroyed their reproductive capacity. Based on the results of the orthogonal test, we selected 400 mmol/L sucrose and 500 μg/mL stearic acid to model a high-sugar and high-lipid diet for <i>C. elegans</i>.</p><p><strong>Conclusion: </strong>High-sugar and high-lipid intake altered the expression of genes involved in biofilm synthesis, genes that catalyze the synthesis and degradation of endogenous substances, and genes involved in innate immunity, resulting in physiological damage. Furthermore, we explored the protective effect of resveratrol on high-sugar and high-lipid damage to nematodes. Resveratrol plays a role in repairing by participating in the metabolism of foreign substances and reducing cellular oxidative stress.</p>","PeriodicalId":12554,"journal":{"name":"Genes & Nutrition","volume":"15 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-020-0659-1","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12263-020-0659-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Background: Excessive intake of carbohydrates and fats causes over-nutrition, leading to a variety of diseases and complications. Here, we characterized the effects of different types of sugar and lipids on the growth and development of Caenorhabditis elegans.

Methods: We measured the lifespan, reproductive capacity, and length of nematodes after sugars and lipids treatment alone and co-treatment of sugars and lipids. Furthermore, we studied the mechanisms underlying the damage caused by high-sucrose and high-stearic acid on C.elegans by using transcriptome sequencing technology.

Results: The results showed that a certain concentration of sugar and lipid promoted the growth and development of nematodes. However, excessive sugars and lipids shortened the lifespan and length of nematodes and destroyed their reproductive capacity. Based on the results of the orthogonal test, we selected 400 mmol/L sucrose and 500 μg/mL stearic acid to model a high-sugar and high-lipid diet for C. elegans.

Conclusion: High-sugar and high-lipid intake altered the expression of genes involved in biofilm synthesis, genes that catalyze the synthesis and degradation of endogenous substances, and genes involved in innate immunity, resulting in physiological damage. Furthermore, we explored the protective effect of resveratrol on high-sugar and high-lipid damage to nematodes. Resveratrol plays a role in repairing by participating in the metabolism of foreign substances and reducing cellular oxidative stress.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过量糖和脂对秀丽隐杆线虫生长发育的影响。
背景:过量摄入碳水化合物和脂肪会导致营养过剩,导致多种疾病和并发症。在这里,我们描述了不同类型的糖和脂类对秀丽隐杆线虫生长发育的影响。方法:我们测量了糖和脂质单独处理和糖和脂质共同处理后线虫的寿命、生殖能力和长度。此外,我们利用转录组测序技术研究了高蔗糖和高硬脂酸对秀丽隐杆线虫的损伤机制。结果:一定浓度的糖和脂类对线虫的生长发育有促进作用。然而,过量的糖和脂会缩短线虫的寿命和长度,并破坏它们的繁殖能力。在正交试验的基础上,选择400 mmol/L蔗糖和500 μg/mL硬脂酸,建立秀丽隐杆线虫高糖高脂日粮模型。结论:高糖高脂摄入改变了生物膜合成相关基因、内源性物质合成与降解催化基因、先天免疫相关基因的表达,导致生理损伤。此外,我们还探讨了白藜芦醇对线虫高糖、高脂损伤的保护作用。白藜芦醇通过参与外来物质的代谢和减少细胞氧化应激,起到修复作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From common to rare: repurposing of bempedoic acid for the treatment of glycogen storage disease type 1. Causal associations of 25-hydroxyvitamin D with functional gastrointestinal disorders: a two-sample Mendelian randomization study. Coffee consumption and periodontitis: a Mendelian Randomization study. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. Causal effects of serum lipid biomarkers on early age-related macular degeneration using Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1