Min Jung Lin, Shen Chang Chang, Tzu Jou Chen, Wei Chih Lin, Shao Yu Peng, Tzu Tai Lee
{"title":"Effect of line and floor type on growth performance and feather characterization during the growth period of White Roman geese.","authors":"Min Jung Lin, Shen Chang Chang, Tzu Jou Chen, Wei Chih Lin, Shao Yu Peng, Tzu Tai Lee","doi":"10.5713/ajas.19.0663","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to investigate whether goose growth and feather characteristics are influenced by their line and feeding surroundings, inclusive of floor materials and types, since there are no reports regarding these factors.</p><p><strong>Methods: </strong>The 240 White Roman geese which were hatched and sex identified came from 3 commercial goose farms. They were randomly distributed to 24 pens depending on a completely random design. The study continued for 13 weeks and included 3 lines of commercial geese and 2 floor types (cement strip floor [CSF] or cement floor [CF]).</p><p><strong>Results: </strong>The day one gosling weight from A farm was lower than other two farms (96 g vs 107 and 115 g; p<0.001). Afterwards, the body weight, back length, keel length, chest girth and main wing feather length among 3 farms showed no significance difference prior to 12 weeks. The CF group showed heavier body weight, shorter back length, longer keel length, shorter chest girth and shorter main wing feather length than the CSF group prior to 12 weeks. The down weight in the CF was heavier than the CSF group (57.1 g vs 41.8 g; p<0.01) prior to 13 weeks.</p><p><strong>Conclusion: </strong>The body weight showed the positive relations for dry feather weight (r = 0.59), down weight (r = 0.69), percent of the down weight of live body weight prior to 13 weeks (r = 0.61).</p>","PeriodicalId":8558,"journal":{"name":"Asian-Australasian Journal of Animal Sciences","volume":"33 9","pages":"1455-1462"},"PeriodicalIF":2.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468168/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-Australasian Journal of Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5713/ajas.19.0663","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Objective: The purpose of this study was to investigate whether goose growth and feather characteristics are influenced by their line and feeding surroundings, inclusive of floor materials and types, since there are no reports regarding these factors.
Methods: The 240 White Roman geese which were hatched and sex identified came from 3 commercial goose farms. They were randomly distributed to 24 pens depending on a completely random design. The study continued for 13 weeks and included 3 lines of commercial geese and 2 floor types (cement strip floor [CSF] or cement floor [CF]).
Results: The day one gosling weight from A farm was lower than other two farms (96 g vs 107 and 115 g; p<0.001). Afterwards, the body weight, back length, keel length, chest girth and main wing feather length among 3 farms showed no significance difference prior to 12 weeks. The CF group showed heavier body weight, shorter back length, longer keel length, shorter chest girth and shorter main wing feather length than the CSF group prior to 12 weeks. The down weight in the CF was heavier than the CSF group (57.1 g vs 41.8 g; p<0.01) prior to 13 weeks.
Conclusion: The body weight showed the positive relations for dry feather weight (r = 0.59), down weight (r = 0.69), percent of the down weight of live body weight prior to 13 weeks (r = 0.61).
期刊介绍:
Asian-Australasian Journal of Animal Sciences (AJAS) aims to publish original and cutting-edge research results and reviews on animal-related aspects of the life sciences. Emphasis will be placed on studies involving farm animals such as cattle, buffaloes, sheep, goats, pigs, horses, and poultry. Studies for the improvement of human health using animal models may also be publishable.
AJAS will encompass all areas of animal production and fundamental aspects of animal sciences: breeding and genetics, reproduction and physiology, nutrition, meat and milk science, biotechnology, behavior, welfare, health, and livestock farming systems.