{"title":"Engineered variants of a lipase from Yarrowia lipolytica with improved trypsin resistance for enzyme replacement therapy.","authors":"Huitu Zhang, Huan Liu, Ying Zhang, Tongwei Sun, Guoguo Wu, Cuixia Zhou, Xiaonong Wu, Jing Zhang, Rong Yue, Haikuan Wang, Yujie Dai, Fufeng Liu, Fuping Lu","doi":"10.1093/protein/gzaa001","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the proteolytic stability of the lipase LIP2 from Yarrowia lipolytica, the peptide bonds susceptible to trypsin in LIP2 were analyzed by tandem mass spectrometry and redesigned by site-directed mutagenesis. Different variants of the enzyme were expressed in Pichia pastoris GS115 and their biochemical properties were subsequently investigated. Although most of the variants were still cleaved by trypsin, some of them did show an evident increase of resistance against proteolytic degradation. The most stable mutant was LIP2-C5, in which five trypsin-cleavage sites were replaced by non-preferred amino acids. Upon incubation with human trypsin for 80 min at 37°C, the mutant LIP2-C5 was found to retain >70% of its initial activity, compared to only 10% for the wild-type.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"32 8","pages":"375-383"},"PeriodicalIF":2.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaa001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
To improve the proteolytic stability of the lipase LIP2 from Yarrowia lipolytica, the peptide bonds susceptible to trypsin in LIP2 were analyzed by tandem mass spectrometry and redesigned by site-directed mutagenesis. Different variants of the enzyme were expressed in Pichia pastoris GS115 and their biochemical properties were subsequently investigated. Although most of the variants were still cleaved by trypsin, some of them did show an evident increase of resistance against proteolytic degradation. The most stable mutant was LIP2-C5, in which five trypsin-cleavage sites were replaced by non-preferred amino acids. Upon incubation with human trypsin for 80 min at 37°C, the mutant LIP2-C5 was found to retain >70% of its initial activity, compared to only 10% for the wild-type.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.