High-Field Dynamic Nuclear Polarization.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Annual review of physical chemistry Pub Date : 2020-04-20 Epub Date: 2020-02-19 DOI:10.1146/annurev-physchem-071119-040222
Björn Corzilius
{"title":"High-Field Dynamic Nuclear Polarization.","authors":"Björn Corzilius","doi":"10.1146/annurev-physchem-071119-040222","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physchem-071119-040222","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-071119-040222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 47

Abstract

Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高场动态核极化。
动态核极化(DNP)是核磁共振(NMR)中最重要的灵敏度增强方法之一。尽管在神奇角旋转(MAS)下的固态DNP已经离开了概念验证阶段,并已成为生物分子和材料结构研究的重要工具,但由于独特的仪器,复杂的样品制备以及多种不同的机制和方法的潜在压倒性组合,它仍然距离主流适用性还很远。本文结合核磁共振和电子顺磁共振的特点,介绍了DNP的研究领域和发展历史。然后,我解释了与高磁场相关的一般概念和详细机制,包括基于Overhauser DNP的解态方法,但更侧重于更成熟的MAS DNP方法。最后,我回顾了实际考虑和应用领域,并讨论了未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
期刊最新文献
Reinvented: An Attosecond Chemist. Aqueous Titania Interfaces. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1