High quantile regression for extreme events.

Q2 Mathematics Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-05-03 DOI:10.1186/s40488-017-0058-3
Mei Ling Huang, Christine Nguyen
{"title":"High quantile regression for extreme events.","authors":"Mei Ling Huang,&nbsp;Christine Nguyen","doi":"10.1186/s40488-017-0058-3","DOIUrl":null,"url":null,"abstract":"<p><p>For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an <i>L</i> <sub>1</sub>-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0058-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0058-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L 1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端事件的高分位数回归。
对于极端事件,重尾分布的高条件分位数估计是一个重要问题。分位数回归是该领域的一种有用的方法,具有广泛的应用。分位数回归使用了1-损失函数,并通过线性规划得到了最优解。本文提出了一种加权分位数回归方法。通过蒙特卡罗模拟,将所提出的方法与现有的估计高条件分位数的方法进行了比较。我们还使用所提出的加权方法研究了两个现实世界的例子。蒙特卡罗仿真和两个实际算例表明,所提方法是对现有方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A generalization to the log-inverse Weibull distribution and its applications in cancer research Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models Structural properties of generalised Planck distributions New class of Lindley distributions: properties and applications Tolerance intervals in statistical software and robustness under model misspecification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1