Optimizing ionic strength of interfacial electric double layer for ultrahigh external quantum efficiency of photomultiplication-type organic photodetectors†
Mingyun Kang, Amit Kumar Harit, Han Young Woo and Dae Sung Chung
{"title":"Optimizing ionic strength of interfacial electric double layer for ultrahigh external quantum efficiency of photomultiplication-type organic photodetectors†","authors":"Mingyun Kang, Amit Kumar Harit, Han Young Woo and Dae Sung Chung","doi":"10.1039/D2TC03335F","DOIUrl":null,"url":null,"abstract":"<p >A synthetic approach for engineering an electric double layer (EDL)-photoactive layer interface in photomultiplication-type organic photodetectors (PM-OPDs), whereby the EDL is strategically embedded between a transparent cathode and the photoactive layer to enhance the photomultiplication mechanism, is demonstrated. To elucidate the effects of the EDL on the PM-OPD performances, a series of conjugated polyelectrolytes (CPE), which form EDLs in solid-state films, based on a poly(fluorene-<em>co</em>-phenylene) backbone, are synthesized by varying ionic densities of quaternary ammonium cations and bromide counterions (per polymer repeat unit). Together with inherent characteristics of the CPE EDL, including modifications in the work function of the transparent cathode suitable for Schottky junction formation and the development of a favorable morphological environment for on-coated polymer semiconductors to exhibit preferential orientations and form defectless films, we find an increase in the EDL ionic density improves the electron trapping ability, affording efficient gain generation. The optimized PM-OPD with the highest ionic density exhibits a record high external quantum efficiency of 4?440?000%, responsivity of 18?700 A W<small><sup>?1</sup></small>, and gain-bandwidth product of 1.98 × 10<small><sup>7</sup></small> Hz as well as an exceptionally large specific detectivity of 3.09 × 10<small><sup>14</sup></small> Jones. This work contributes toward further improvements in PM-OPDs, particularly by adjusting the electrostatic environment.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2022/tc/d2tc03335f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A synthetic approach for engineering an electric double layer (EDL)-photoactive layer interface in photomultiplication-type organic photodetectors (PM-OPDs), whereby the EDL is strategically embedded between a transparent cathode and the photoactive layer to enhance the photomultiplication mechanism, is demonstrated. To elucidate the effects of the EDL on the PM-OPD performances, a series of conjugated polyelectrolytes (CPE), which form EDLs in solid-state films, based on a poly(fluorene-co-phenylene) backbone, are synthesized by varying ionic densities of quaternary ammonium cations and bromide counterions (per polymer repeat unit). Together with inherent characteristics of the CPE EDL, including modifications in the work function of the transparent cathode suitable for Schottky junction formation and the development of a favorable morphological environment for on-coated polymer semiconductors to exhibit preferential orientations and form defectless films, we find an increase in the EDL ionic density improves the electron trapping ability, affording efficient gain generation. The optimized PM-OPD with the highest ionic density exhibits a record high external quantum efficiency of 4?440?000%, responsivity of 18?700 A W?1, and gain-bandwidth product of 1.98 × 107 Hz as well as an exceptionally large specific detectivity of 3.09 × 1014 Jones. This work contributes toward further improvements in PM-OPDs, particularly by adjusting the electrostatic environment.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors