Sarah R Hansen, Adedeji M Aderounmu, Helen M Donelick, Brenda L Bass
{"title":"Dicer's Helicase Domain: A Meeting Place for Regulatory Proteins.","authors":"Sarah R Hansen, Adedeji M Aderounmu, Helen M Donelick, Brenda L Bass","doi":"10.1101/sqb.2019.84.039750","DOIUrl":null,"url":null,"abstract":"<p><p>The function of Dicer's helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.</p>","PeriodicalId":72635,"journal":{"name":"Cold Spring Harbor symposia on quantitative biology","volume":"84 ","pages":"185-193"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1101/sqb.2019.84.039750","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor symposia on quantitative biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/sqb.2019.84.039750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The function of Dicer's helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.