{"title":"The Interpretation of Diffuse Reflectance Spectra.","authors":"Harry G Hecht","doi":"10.6028/jres.080A.056","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous treatments of the diffuse reflecting properties of scattering media have been described. Many theories give an adequate account of the reflectance for a specific set of conditions for which the model was constructed and the solution tested experimentally. Only those models which are considered to be fairly general are considered here. It is convenient to divide the theories into those based upon continuum models and those based upon statistical models. The continuum models typically describe the scattering and absorbing properties of a given medium in terms of two phenomenological constants. These models may all be regarded as varying levels of approximate solution to the general equation of radiative transfer. This provides a convenient basis for comparison of the various theories. The statistical models are based upon a summation of transmittances and reflectances from individual layers or particles. Thus, some assumptions must be made about the nature of the fundamental units, and the validity of the ultimate result will depend upon how closely these assumptions correspond with reality. Only the statistical models lead to expressions from which absolute absorptivities and scattering coefficients can be calculated and related to the actual particle characteristics. The relationship between the various models will be discussed and the features which typify the absorptivity and scattering coefficient according to each will be compared and related to the available experimental data. This leads to a consideration of the characteristics of appropriate model systems and standards.</p>","PeriodicalId":17018,"journal":{"name":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","volume":"80A 4","pages":"567-583"},"PeriodicalIF":0.0000,"publicationDate":"1976-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293523/pdf/","citationCount":"151","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080A.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"1976/8/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151
Abstract
Numerous treatments of the diffuse reflecting properties of scattering media have been described. Many theories give an adequate account of the reflectance for a specific set of conditions for which the model was constructed and the solution tested experimentally. Only those models which are considered to be fairly general are considered here. It is convenient to divide the theories into those based upon continuum models and those based upon statistical models. The continuum models typically describe the scattering and absorbing properties of a given medium in terms of two phenomenological constants. These models may all be regarded as varying levels of approximate solution to the general equation of radiative transfer. This provides a convenient basis for comparison of the various theories. The statistical models are based upon a summation of transmittances and reflectances from individual layers or particles. Thus, some assumptions must be made about the nature of the fundamental units, and the validity of the ultimate result will depend upon how closely these assumptions correspond with reality. Only the statistical models lead to expressions from which absolute absorptivities and scattering coefficients can be calculated and related to the actual particle characteristics. The relationship between the various models will be discussed and the features which typify the absorptivity and scattering coefficient according to each will be compared and related to the available experimental data. This leads to a consideration of the characteristics of appropriate model systems and standards.