Searching for structure in collective systems.

IF 1.3 4区 生物学 Q3 BIOLOGY Theory in Biosciences Pub Date : 2021-11-01 Epub Date: 2020-03-23 DOI:10.1007/s12064-020-00311-9
Colin R Twomey, Andrew T Hartnett, Matthew M G Sosna, Pawel Romanczuk
{"title":"Searching for structure in collective systems.","authors":"Colin R Twomey,&nbsp;Andrew T Hartnett,&nbsp;Matthew M G Sosna,&nbsp;Pawel Romanczuk","doi":"10.1007/s12064-020-00311-9","DOIUrl":null,"url":null,"abstract":"<p><p>From fish schools and bird flocks to biofilms and neural networks, collective systems in nature are made up of many mutually influencing individuals that interact locally to produce large-scale coordinated behavior. Although coordination is central to what it means to behave collectively, measures of large-scale coordination in these systems are ad hoc and system specific. The lack of a common quantitative scale makes broad cross-system comparisons difficult. Here we identify a system-independent measure of coordination based on an information-theoretic measure of multivariate dependence and show it can be used in practice to give a new view of even classic, well-studied collective systems. Moreover, we use this measure to derive a novel method for finding the most coordinated components within a system and demonstrate how this can be used in practice to reveal intrasystem organizational structure.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00311-9","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-020-00311-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

From fish schools and bird flocks to biofilms and neural networks, collective systems in nature are made up of many mutually influencing individuals that interact locally to produce large-scale coordinated behavior. Although coordination is central to what it means to behave collectively, measures of large-scale coordination in these systems are ad hoc and system specific. The lack of a common quantitative scale makes broad cross-system comparisons difficult. Here we identify a system-independent measure of coordination based on an information-theoretic measure of multivariate dependence and show it can be used in practice to give a new view of even classic, well-studied collective systems. Moreover, we use this measure to derive a novel method for finding the most coordinated components within a system and demonstrate how this can be used in practice to reveal intrasystem organizational structure.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在集体系统中寻找结构。
从鱼群和鸟群到生物膜和神经网络,自然界中的集体系统是由许多相互影响的个体组成的,这些个体在局部相互作用,产生大规模的协调行为。虽然协调是集体行为的核心,但这些系统中大规模协调的度量是特别的和系统特定的。由于缺乏共同的定量尺度,使得广泛的跨系统比较变得困难。在这里,我们确定了一个基于多元依赖的信息论度量的系统独立的协调度量,并表明它可以在实践中使用,甚至可以给出经典的、经过充分研究的集体系统的新观点。此外,我们使用这种方法推导出一种新的方法来寻找系统中最协调的组件,并演示如何在实践中使用这种方法来揭示系统内部的组织结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
期刊最新文献
Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Do concepts of individuality account for individuation practices in studies of host–parasite systems? A modeling account of biological individuality Spaces of mathematical chemistry Prioritizing cervical cancer candidate genes using chaos game and fractal-based time series approach. Application of network pharmacology in synergistic action of Chinese herbal compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1