Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica.

Q1 Medicine EcoSal Plus Pub Date : 2020-03-01 DOI:10.1128/ecosalplus.ESP-0030-2019
Jens Hör, Gianluca Matera, Jörg Vogel, Susan Gottesman, Gisela Storz
{"title":"Trans-Acting Small RNAs and Their Effects on Gene Expression in <i>Escherichia coli</i> and <i>Salmonella enterica</i>.","authors":"Jens Hör, Gianluca Matera, Jörg Vogel, Susan Gottesman, Gisela Storz","doi":"10.1128/ecosalplus.ESP-0030-2019","DOIUrl":null,"url":null,"abstract":"<p><p>The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with <i>Escherichia coli</i> and <i>Salmonella enterica</i> serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in <i>E. coli</i> K-12 and <i>S. enterica</i> Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112153/pdf/nihms-1551392.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0030-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反式作用小核糖核酸及其对大肠杆菌和肠炎沙门氏菌基因表达的影响
过去几十年来,我们对小调控 RNA(sRNA)在许多细菌物种的调控回路和应激反应中所起的主要作用的了解有了爆炸性的增长。大部分基础研究工作是在大肠杆菌和鼠伤寒沙门氏菌中进行的。对这些生物的研究为 sRNA 的功能及其对细菌生理的影响提供了一个概览,为许多其他原核生物的 sRNA 生物学研究提供了蓝本。这些研究还促进了新技术的发展。在本章中,我们首先总结了如何鉴定这些 sRNA,并在此过程中对它们进行了定义。我们讨论了它们是如何被调控以及如何发挥作用的,并提供了它们在调控回路中的作用以及这种调控的后果的部分实例。在整个过程中,我们总结了为鉴定和研究调控 RNA 而开发的方法,其中大部分方法都适用于其他细菌。最新更新的大肠杆菌 K-12 和鼠伤寒沙门氏菌 SL1344 中已知 sRNA 的数据库可作为大部分讨论的参考点,希望能为读者和未来的实验提供资源,以解决本综述中提出的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Transcription activation in Escherichia coli and Salmonella. Type IV pili of Enterobacteriaceae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1