{"title":"An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature.","authors":"Soyoung Park, Alicia Carriquiry","doi":"10.1002/sam.11449","DOIUrl":null,"url":null,"abstract":"<p><p>Footwear examiners are tasked with comparing an outsole impression (<i>Q</i>) left at a crime scene with an impression (<i>K</i>) from a database or from the suspect's shoe. We propose a method for comparing two shoe outsole impressions that relies on robust features (speeded-up robust feature; SURF) on each impression and aligns them using a maximum clique (MC). After alignment, an algorithm we denote MC-COMP is used to extract additional features that are then combined into a univariate similarity score using a random forest (RF). We use a database of shoe outsole impressions that includes images from two models of athletic shoes that were purchased new and then worn by study participants for about 6 months. The shoes share class characteristics such as outsole pattern and size, and thus the comparison is challenging. We find that the RF implemented on SURF outperforms other methods recently proposed in the literature in terms of classification precision. In more realistic scenarios where crime scene impressions may be degraded and smudged, the algorithm we propose-denoted MC-COMP-SURF-shows the best classification performance by detecting unique features better than other methods. The algorithm can be implemented with the R-package shoeprintr.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"13 2","pages":"188-199"},"PeriodicalIF":2.1000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11449","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Footwear examiners are tasked with comparing an outsole impression (Q) left at a crime scene with an impression (K) from a database or from the suspect's shoe. We propose a method for comparing two shoe outsole impressions that relies on robust features (speeded-up robust feature; SURF) on each impression and aligns them using a maximum clique (MC). After alignment, an algorithm we denote MC-COMP is used to extract additional features that are then combined into a univariate similarity score using a random forest (RF). We use a database of shoe outsole impressions that includes images from two models of athletic shoes that were purchased new and then worn by study participants for about 6 months. The shoes share class characteristics such as outsole pattern and size, and thus the comparison is challenging. We find that the RF implemented on SURF outperforms other methods recently proposed in the literature in terms of classification precision. In more realistic scenarios where crime scene impressions may be degraded and smudged, the algorithm we propose-denoted MC-COMP-SURF-shows the best classification performance by detecting unique features better than other methods. The algorithm can be implemented with the R-package shoeprintr.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.