Precommissural and postcommissural fornix microstructure in healthy aging and cognition.

Brain and neuroscience advances Pub Date : 2020-01-22 eCollection Date: 2020-01-01 DOI:10.1177/2398212819899316
Bethany M Coad, Emma Craig, Rebecca Louch, John P Aggleton, Seralynne D Vann, Claudia Metzler-Baddeley
{"title":"Precommissural and postcommissural fornix microstructure in healthy aging and cognition.","authors":"Bethany M Coad, Emma Craig, Rebecca Louch, John P Aggleton, Seralynne D Vann, Claudia Metzler-Baddeley","doi":"10.1177/2398212819899316","DOIUrl":null,"url":null,"abstract":"<p><p>The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T<sub>1</sub>-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R<sub>1</sub> and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212819899316"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2398212819899316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
健康老龄化和认知中的穹窿前和穹窿后微结构。
穹窿是海马形成的一个关键束,据推测其状态会导致与年龄相关的认知能力衰退。膜前和膜后穹窿分支分别形成基底前脑/额叶和间脑网络,可能会对衰老和认知产生不同的影响。我们采用了多参数磁共振成像(MRI)技术,包括神经元取向密度和弥散成像、定量磁化转移(qMT)和 T1 宽松度磁共振成像,研究了 149 名无症状参与者(38-71 岁)的这些穹窿分支的微观结构特性及其与衰老和认知的关系。衰老与游离水信号增加、髓鞘敏感 R1 和 qMT 指数降低有关,但在前突纤维和后突纤维中没有明显的轴突密度差异。相对于后神经纤维,前神经纤维显示出一种独特的微结构模式,其特点是自由水信号和轴突方向散布较大,而明显的髓鞘和轴突密度较低。此外,后神经纤维微结构的差异与物体定位配对联想学习的成绩差异有关。这些结果提供了新的体内神经影像学证据,证明前神经纤维和后神经纤维具有不同的微观结构特性,这与轴突示踪研究中发现的解剖结构一致,也证明了后神经纤维对空间构型学习的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Review of the gastric physiology of disgust: Proto-nausea as an under-explored facet of the gut-brain axis. From neurophobia to neurophilia: Fostering confidence and passion for neurology in medical students. Are all neuroscience degrees the same? A comparison of undergraduate neuroscience degrees across the United Kingdom. Centralising a loss of consciousness to the central medial thalamus. Genetically modified animals as models of neurodevelopmental conditions: A review of systematic review reporting quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1