István Csarnovics, Julia Burunkova, Danara Sviazhina, Evgeniy Oskolkov, George Alkhalil, Elena Orishak, Ludmila Nilova, István Szabó, Péter Rutka, Krisztián Bene, Attila Bácsi, Sándor Kökényesi
{"title":"Development and Study of Biocompatible Polyurethane-Based Polymer-Metallic Nanocomposites.","authors":"István Csarnovics, Julia Burunkova, Danara Sviazhina, Evgeniy Oskolkov, George Alkhalil, Elena Orishak, Ludmila Nilova, István Szabó, Péter Rutka, Krisztián Bene, Attila Bácsi, Sándor Kökényesi","doi":"10.2147/NSA.S245071","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In this work we selected components, developed technology and studied a number of parameters of polymer nanocomposite materials, remembering that the material would have high optical and good mechanical characteristics, good sorption ability in order to ensure high value of the optical signal for a short time while maintaining the initial geometric shape. In addition, if this nanocomposite is used for medicine and biology (biocompatible or biocidal materials or the creation of a sensor based on it), the material must be non-toxic and/or biocompatible. We study the creation of polymer nanocomposites which may be applied as biocompatible materials with new functional parameters.</p><p><strong>Material and methods: </strong>A number of polymer nanocomposites based on various urethane-acrylate monomers and nanoparticles of gold, silicon oxides, zinc and/or titanium oxides are obtained, their mechanical (microhardness) properties and wettability (contact angle) are studied. The set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms are also investigated in order to prove their possible applicability.</p><p><strong>Results and discussion: </strong>The composition of the samples influences their microhardness and the value of contact angle, which means that varying with the monomer and the metallic, oxide nanoparticles composition, we could change these parameters. Besides it, the set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms were also investigated in order to prove their possible applicability. It was shown that the materials are non-toxic, the adhesion of microorganisms on their surface also could be varied by changing their composition.</p><p><strong>Conclusion: </strong>The presented polymer nanocomposites with different compositions of monomer and the presence of nanoparticles in them are prospective material for a possible bio-application as it is biocompatible, not toxic. The sorption of microorganism could be varied depending on the type of bacterias, the monomer composition, and nanoparticles.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/21/nsa-13-11.PMC7127852.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S245071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In this work we selected components, developed technology and studied a number of parameters of polymer nanocomposite materials, remembering that the material would have high optical and good mechanical characteristics, good sorption ability in order to ensure high value of the optical signal for a short time while maintaining the initial geometric shape. In addition, if this nanocomposite is used for medicine and biology (biocompatible or biocidal materials or the creation of a sensor based on it), the material must be non-toxic and/or biocompatible. We study the creation of polymer nanocomposites which may be applied as biocompatible materials with new functional parameters.
Material and methods: A number of polymer nanocomposites based on various urethane-acrylate monomers and nanoparticles of gold, silicon oxides, zinc and/or titanium oxides are obtained, their mechanical (microhardness) properties and wettability (contact angle) are studied. The set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms are also investigated in order to prove their possible applicability.
Results and discussion: The composition of the samples influences their microhardness and the value of contact angle, which means that varying with the monomer and the metallic, oxide nanoparticles composition, we could change these parameters. Besides it, the set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms were also investigated in order to prove their possible applicability. It was shown that the materials are non-toxic, the adhesion of microorganisms on their surface also could be varied by changing their composition.
Conclusion: The presented polymer nanocomposites with different compositions of monomer and the presence of nanoparticles in them are prospective material for a possible bio-application as it is biocompatible, not toxic. The sorption of microorganism could be varied depending on the type of bacterias, the monomer composition, and nanoparticles.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.