{"title":"Transcriptional Coactivator PGC-1α Binding to Newly Synthesized RNA via CBP80: A Nexus for Co- and Posttranscriptional Gene Regulation.","authors":"Xavier Rambout, Hana Cho, Lynne E Maquat","doi":"10.1101/sqb.2019.84.040212","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian cells have many quality-control mechanisms that regulate protein-coding gene expression to ensure proper transcript synthesis, processing, and translation. Should a step in transcript metabolism fail to fulfill requisite spatial, temporal, or structural criteria, including the proper acquisition of RNA-binding proteins, then that step will halt, fail to proceed to the next step, and ultimately result in transcript degradation. Quality-control mechanisms constitute a continuum of processes that initiate in the nucleus and extend to the cytoplasm. Here, we present published and unpublished data for protein-coding genes whose expression is activated by the transcriptional coactivator PGC-1α. We show that PGC-1α movement from chromatin, to which it is recruited by DNA-binding proteins, to CBP80 at the 5' cap of nascent transcripts begins a series of co- and posttranscriptional quality- and quantity-control steps that, in total, ensure proper gene expression.</p>","PeriodicalId":72635,"journal":{"name":"Cold Spring Harbor symposia on quantitative biology","volume":"84 ","pages":"47-54"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor symposia on quantitative biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/sqb.2019.84.040212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Mammalian cells have many quality-control mechanisms that regulate protein-coding gene expression to ensure proper transcript synthesis, processing, and translation. Should a step in transcript metabolism fail to fulfill requisite spatial, temporal, or structural criteria, including the proper acquisition of RNA-binding proteins, then that step will halt, fail to proceed to the next step, and ultimately result in transcript degradation. Quality-control mechanisms constitute a continuum of processes that initiate in the nucleus and extend to the cytoplasm. Here, we present published and unpublished data for protein-coding genes whose expression is activated by the transcriptional coactivator PGC-1α. We show that PGC-1α movement from chromatin, to which it is recruited by DNA-binding proteins, to CBP80 at the 5' cap of nascent transcripts begins a series of co- and posttranscriptional quality- and quantity-control steps that, in total, ensure proper gene expression.