{"title":"Influence of Immune Status on the Airborne Colonization of Piglets with Methicillin-Resistant Staphylococcus aureus (MRSA) Clonal Complex (CC) 398.","authors":"Kerstin Rosen, Friederike Ebner, Stefanie Schmidt, Susanne Hartmann, Roswitha Merle, Anika Friese, Uwe Roesler","doi":"10.1556/1886.2019.00024","DOIUrl":null,"url":null,"abstract":"<p><p>Colonized vertebrates including humans and pigs are to date the main reservoirs of livestock-associated Methicillin-resistant <i>Staphylococcus aureus</i> (LA-MRSA). Currently, the mechanisms underlying colonization of pigs are not fully understood. We investigated the influence of piglet pre-immune status on airborne MRSA colonization. Three groups of MRSA-negative piglets were primed and exposed to airborne LA-MRSA (10<sup>4</sup> colony forming units (cfu)/m<sup>3</sup>) in an aerosol chamber for 24 h. One group was treated intramuscularly with dexamethasone (1 mg/kg body weight) to imitate weaning stress. The second group was exposed to bacterial endotoxin containing MRSA aerosol. Both conditions play a role in the development of multifactorial diseases and may promote MRSA colonization success. The third group served as control. The piglets' MRSA status was monitored for 21 days via swab samples. At necropsy, specific tissues and organs were analyzed. Blood was collected to examine specific immunological parameters. The duration of MRSA colonization was not extended in both treated groups compared to the control group, indicating the two immune-status influencing factors do not promote MRSA colonization. Blood sample analysis confirmed a mild dexamethasone-induced immune suppression and typical endotoxin-related changes in peripheral blood. Of note, the low-dose dexamethasone treatment showed a trend of increased MRSA clearance.</p>","PeriodicalId":11929,"journal":{"name":"European Journal of Microbiology & Immunology","volume":"10 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/40/eujmi-10-001.PMC7182117.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Microbiology & Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1886.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Colonized vertebrates including humans and pigs are to date the main reservoirs of livestock-associated Methicillin-resistant Staphylococcus aureus (LA-MRSA). Currently, the mechanisms underlying colonization of pigs are not fully understood. We investigated the influence of piglet pre-immune status on airborne MRSA colonization. Three groups of MRSA-negative piglets were primed and exposed to airborne LA-MRSA (104 colony forming units (cfu)/m3) in an aerosol chamber for 24 h. One group was treated intramuscularly with dexamethasone (1 mg/kg body weight) to imitate weaning stress. The second group was exposed to bacterial endotoxin containing MRSA aerosol. Both conditions play a role in the development of multifactorial diseases and may promote MRSA colonization success. The third group served as control. The piglets' MRSA status was monitored for 21 days via swab samples. At necropsy, specific tissues and organs were analyzed. Blood was collected to examine specific immunological parameters. The duration of MRSA colonization was not extended in both treated groups compared to the control group, indicating the two immune-status influencing factors do not promote MRSA colonization. Blood sample analysis confirmed a mild dexamethasone-induced immune suppression and typical endotoxin-related changes in peripheral blood. Of note, the low-dose dexamethasone treatment showed a trend of increased MRSA clearance.