Recent Advances in Understanding the Genetic Architecture of Autism.

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2020-08-31 Epub Date: 2020-05-12 DOI:10.1146/annurev-genom-121219-082309
Caroline M Dias, Christopher A Walsh
{"title":"Recent Advances in Understanding the Genetic Architecture of Autism.","authors":"Caroline M Dias,&nbsp;Christopher A Walsh","doi":"10.1146/annurev-genom-121219-082309","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in understanding the genetic architecture of autism spectrum disorder have allowed for unprecedented insight into its biological underpinnings. New studies have elucidated the contributions of a variety of forms of genetic variation to autism susceptibility. While the roles of de novo copy number variants and single-nucleotide variants-causing loss-of-function or missense changes-have been increasingly recognized and refined, mosaic single-nucleotide variants have been implicated more recently in some cases. Moreover, inherited variants (including common variants) and, more recently, rare recessive inherited variants have come into greater focus. Finally, noncoding variants-both inherited and de novo-have been implicated in the last few years. This work has revealed a convergence of diverse genetic drivers on common biological pathways and has highlighted the ongoing importance of increasing sample size and experimental innovation. Continuing to synthesize these genetic findings with functional and phenotypic evidence and translating these discoveries to clinical care remain considerable challenges for the field.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genom-121219-082309","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-121219-082309","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 25

Abstract

Recent advances in understanding the genetic architecture of autism spectrum disorder have allowed for unprecedented insight into its biological underpinnings. New studies have elucidated the contributions of a variety of forms of genetic variation to autism susceptibility. While the roles of de novo copy number variants and single-nucleotide variants-causing loss-of-function or missense changes-have been increasingly recognized and refined, mosaic single-nucleotide variants have been implicated more recently in some cases. Moreover, inherited variants (including common variants) and, more recently, rare recessive inherited variants have come into greater focus. Finally, noncoding variants-both inherited and de novo-have been implicated in the last few years. This work has revealed a convergence of diverse genetic drivers on common biological pathways and has highlighted the ongoing importance of increasing sample size and experimental innovation. Continuing to synthesize these genetic findings with functional and phenotypic evidence and translating these discoveries to clinical care remain considerable challenges for the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自闭症基因结构的最新研究进展。
最近在了解自闭症谱系障碍的遗传结构方面取得的进展,使人们对其生物学基础有了前所未有的了解。新的研究已经阐明了多种形式的遗传变异对自闭症易感性的贡献。虽然新生拷贝数变异和单核苷酸变异(导致功能丧失或错义变化)的作用已被越来越多地认识和完善,但镶嵌单核苷酸变异最近在某些情况下被暗示。此外,遗传变异(包括常见变异)和最近罕见的隐性遗传变异已成为更大的焦点。最后,非编码变异——遗传的和新生的——在过去几年中也被提及。这项工作揭示了共同生物学途径上不同遗传驱动因素的趋同,并强调了增加样本量和实验创新的持续重要性。继续将这些遗传发现与功能和表型证据综合起来,并将这些发现转化为临床护理,仍然是该领域面临的重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1