Jianjun Zhang, Qiuying Sha, Han Hao, Shuanglin Zhang, Xiaoyi Raymond Gao, Xuexia Wang
{"title":"Test Gene-Environment Interactions for Multiple Traits in Sequencing Association Studies.","authors":"Jianjun Zhang, Qiuying Sha, Han Hao, Shuanglin Zhang, Xiaoyi Raymond Gao, Xuexia Wang","doi":"10.1159/000506008","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The risk of many complex diseases is determined by an interplay of genetic and environmental factors. The examination of gene-environment interactions (G×Es) for multiple traits can yield valuable insights about the etiology of the disease and increase power in detecting disease-associated genes. However, the methods for testing G×Es for multiple traits are very limited.</p><p><strong>Method: </strong>We developed novel approaches to test G×Es for multiple traits in sequencing association studies. We first perform a transformation of multiple traits by using either principal component analysis or standardization analysis. Then, we detect the effects of G×Es using novel proposed tests: testing the effect of an optimally weighted combination of G×Es (TOW-GE) and/or variable weight TOW-GE (VW-TOW-GE). Finally, we employ Fisher's combination test to combine the p values.</p><p><strong>Results: </strong>Extensive simulation studies show that the type I error rates of the proposed methods are well controlled. Compared to the interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are only rare risk and protective variants; VW-TOW-GE is more powerful when there are both rare and common variants. Both TOW-GE and VW-TOW-GE are robust to directions of effects of causal G×Es. Application to the COPDGene Study demonstrates that our proposed methods are very effective.</p><p><strong>Conclusions: </strong>Our proposed methods are useful tools in the identification of G×Es for multiple traits. The proposed methods can be used not only to identify G×Es for common variants, but also for rare variants. Therefore, they can be employed in identifying G×Es in both genome-wide association studies and next-generation sequencing data analyses.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"84 4-5","pages":"170-196"},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351593/pdf/nihms-1558071.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000506008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: The risk of many complex diseases is determined by an interplay of genetic and environmental factors. The examination of gene-environment interactions (G×Es) for multiple traits can yield valuable insights about the etiology of the disease and increase power in detecting disease-associated genes. However, the methods for testing G×Es for multiple traits are very limited.
Method: We developed novel approaches to test G×Es for multiple traits in sequencing association studies. We first perform a transformation of multiple traits by using either principal component analysis or standardization analysis. Then, we detect the effects of G×Es using novel proposed tests: testing the effect of an optimally weighted combination of G×Es (TOW-GE) and/or variable weight TOW-GE (VW-TOW-GE). Finally, we employ Fisher's combination test to combine the p values.
Results: Extensive simulation studies show that the type I error rates of the proposed methods are well controlled. Compared to the interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are only rare risk and protective variants; VW-TOW-GE is more powerful when there are both rare and common variants. Both TOW-GE and VW-TOW-GE are robust to directions of effects of causal G×Es. Application to the COPDGene Study demonstrates that our proposed methods are very effective.
Conclusions: Our proposed methods are useful tools in the identification of G×Es for multiple traits. The proposed methods can be used not only to identify G×Es for common variants, but also for rare variants. Therefore, they can be employed in identifying G×Es in both genome-wide association studies and next-generation sequencing data analyses.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.