Pharmacokinetics of Darolutamide in Mouse - Assessment of the Disposition of the Diastereomers, Key Active Metabolite and Interconversion Phenomenon: Implications to Cancer Patients.
Neeraj K Saini, Bhavesh B Gabani, Umesh Todmal, Suresh P Sulochana, Vinay Kiran, Mohd Zainuddin, Narayanan Balaji, Sai B Polina, Nuggehally R Srinivas, Ramesh Mullangi
{"title":"Pharmacokinetics of Darolutamide in Mouse - Assessment of the Disposition of the Diastereomers, Key Active Metabolite and Interconversion Phenomenon: Implications to Cancer Patients.","authors":"Neeraj K Saini, Bhavesh B Gabani, Umesh Todmal, Suresh P Sulochana, Vinay Kiran, Mohd Zainuddin, Narayanan Balaji, Sai B Polina, Nuggehally R Srinivas, Ramesh Mullangi","doi":"10.2174/1872312814666200521091236","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Darolutamide is recently approved for the treatment of non-metastatic castrate resistance prostate cancer. Hitherto, no stereoselective pharmacokinetic data have been published pertaining to darolutamide and its diastereomers in animals or humans. The key aims of the experiment were to examine darolutamide, S,S-darolutamide and S,R-darolutamide with respect to (a) assessment of in vitro metabolic stability and protein binding and (b) characterization of in vivo oral and intravenous pharmacokinetics in mice.</p><p><strong>Methods: </strong>In vitro (liver microsomes stability and protein binding) and in vivo experiments (oral/intravenous dosing to mice) were carried out using darolutamide, S,S-darolutamide and S,Rdarolutamide. Besides, tissue levels of darolutamide, S,S-darolutamide and S,R-darolutamide were measured following oral and intravenous dosing. Appropriate plasma/tissue samples served to determine the pharmacokinetics of various analytes in mice. Liquid chromatography in tandem with mass spectrometry procedures enabled the delineation of the plasma pharmacokinetics, in vitro and tissue uptake data of the various analytes.</p><p><strong>Results: </strong>Chiral inversion was absent in the metabolic stability study. However, darolutamide showed profound stereoselectivity (S,S-darolutamide greater than S,R-darolutamide) after either intravenous or oral dosing. S,R-darolutamide but not S,S-darolutamide showed conversion to its antipode post oral and intravenous dosing to mice. Regardless of oral or intravenous dosing, active keto darolutamide formation was evident after administration of darolutamide, S,S-darolutamide or S,R- darolutamide. Tissue data supported the observations in plasma; however, tissue exposure of darolutamide, S,Sdarolutamide and S,R-darolutamide was much lower as compared to plasma.</p><p><strong>Conclusion: </strong>In lieu of the human pharmacokinetic data, although the administration of diastereomeric darolutamide was justified, it is proposed to delineate the clinical pharmacokinetics of S,Rdarolutamide and S,S-darolutamide relative to darolutamide in future clinical pharmacology studies.</p>","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":"14 1","pages":"54-65"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312814666200521091236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Darolutamide is recently approved for the treatment of non-metastatic castrate resistance prostate cancer. Hitherto, no stereoselective pharmacokinetic data have been published pertaining to darolutamide and its diastereomers in animals or humans. The key aims of the experiment were to examine darolutamide, S,S-darolutamide and S,R-darolutamide with respect to (a) assessment of in vitro metabolic stability and protein binding and (b) characterization of in vivo oral and intravenous pharmacokinetics in mice.
Methods: In vitro (liver microsomes stability and protein binding) and in vivo experiments (oral/intravenous dosing to mice) were carried out using darolutamide, S,S-darolutamide and S,Rdarolutamide. Besides, tissue levels of darolutamide, S,S-darolutamide and S,R-darolutamide were measured following oral and intravenous dosing. Appropriate plasma/tissue samples served to determine the pharmacokinetics of various analytes in mice. Liquid chromatography in tandem with mass spectrometry procedures enabled the delineation of the plasma pharmacokinetics, in vitro and tissue uptake data of the various analytes.
Results: Chiral inversion was absent in the metabolic stability study. However, darolutamide showed profound stereoselectivity (S,S-darolutamide greater than S,R-darolutamide) after either intravenous or oral dosing. S,R-darolutamide but not S,S-darolutamide showed conversion to its antipode post oral and intravenous dosing to mice. Regardless of oral or intravenous dosing, active keto darolutamide formation was evident after administration of darolutamide, S,S-darolutamide or S,R- darolutamide. Tissue data supported the observations in plasma; however, tissue exposure of darolutamide, S,Sdarolutamide and S,R-darolutamide was much lower as compared to plasma.
Conclusion: In lieu of the human pharmacokinetic data, although the administration of diastereomeric darolutamide was justified, it is proposed to delineate the clinical pharmacokinetics of S,Rdarolutamide and S,S-darolutamide relative to darolutamide in future clinical pharmacology studies.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.