{"title":"Relevance of mouse lung tumors to human risk assessment.","authors":"Samuel M Cohen, Yan Zhongyu, James S Bus","doi":"10.1080/10937404.2020.1763879","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is <i>p</i> < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2020.1763879","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2020.1763879","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 16
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
期刊介绍:
"Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health.
Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews."
The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.