Machine learning can accelerate discovery and application of cyber-molecular cancer diagnostics.

David S Campo, Yury Khudyakov
{"title":"Machine learning can accelerate discovery and application of cyber-molecular cancer diagnostics.","authors":"David S Campo, Yury Khudyakov","doi":"10.21037/jmai.2020.01.01","DOIUrl":null,"url":null,"abstract":"© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2020;3:7 | http://dx.doi.org/10.21037/jmai.2020.01.01 Accurate and early cancer diagnosis is fundamental for clinical management and public health. Unfortunately, the biological complexity of cancer confounds the development of effective diagnostic approaches to its detection. Histological examination of tissue samples obtained by biopsy directly from solid tumors and imaging technologies remain as the mainstays of cancer diagnostics. The liquid biopsy concept aims to overcome the shortcomings of these onco-diagnostics by detecting tumor-derived biomarkers such as circulating tumor cells, extracellular vesicles, nucleosomes, proteins, antigens, and extracellular nucleic acids in blood (1). Among many, mitochondrial DNA (mtDNA) is one of the most promising biomarkers of liquid biopsy. Mitochondria are highly abundant in human body, exceeding the number of human cells by 100–10,000 times. They play an essential role in the whole-body physiology, being involved in bioenergetics, apoptosis, innate immunity, networks of communication with different cell types and metabolic coordination. Owing to such fundamental involvement of mitochondria in human physiology, mtDNA mutations in general have a highly detrimental effect on cell viability. Nevertheless, the astronomical mitochondrial population size, lack of genetic mechanisms for effective control of mutations, genetic complementation and vegetative segregation of mtDNA establish an environment that supports a significant intra-host mitochondrial genetic heterogeneity, known as heteroplasmy (2). Some health conditions, such as cancer are potentially conducive to maintaining heteroplasmy. The intra-host mitochondrial genetic diversity detected in blood is very dynamic and may change at the rate usually observed in intra-host viral populations, rapidly responding to, for example, progression of cancer or hepatitis C virus infection (3-5). The dynamic nature of mitochondrial genetic heterogeneity in blood offers potential diagnostic opportunities for the detection of cancer and other health conditions (3,6). The fluid biopsy concept takes advantage of such opportunities and provides guiding principles for diagnosing and managing cancer using blood rather than solid tumor tissue, with several molecular approaches being developed for the direct detection of circulating mtDNA variants associated with cancer (7,8). We recently showed that heterogeneity at specially selected polymorphic mtDNA sites can be efficiently associated with liver cancer by means of machine learning, suggesting a different research direction towards development of novel cyber-molecular diagnostics (6). Such assays are basically complex computational models capable of extracting diagnostically relevant information from molecular data obtained using Ultra-Deep Sequencing (UDS) technologies. Molecular wet-laboratory assays generate diagnostic information directly from blood by detection of circulating specific sequence variants. Performance of wet-laboratory assays can be greatly afflicted by a limited presentation of tumor-derived genetic markers in blood (9), owing either to a low level of specific variants or to abundance of different mutations associated with cancer, reflecting the complex biological nature of this disease. Assays based on the identification of patterns in molecular data are potentially less Letter to the Editor","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"3 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/jmai.2020.01.01","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai.2020.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2020;3:7 | http://dx.doi.org/10.21037/jmai.2020.01.01 Accurate and early cancer diagnosis is fundamental for clinical management and public health. Unfortunately, the biological complexity of cancer confounds the development of effective diagnostic approaches to its detection. Histological examination of tissue samples obtained by biopsy directly from solid tumors and imaging technologies remain as the mainstays of cancer diagnostics. The liquid biopsy concept aims to overcome the shortcomings of these onco-diagnostics by detecting tumor-derived biomarkers such as circulating tumor cells, extracellular vesicles, nucleosomes, proteins, antigens, and extracellular nucleic acids in blood (1). Among many, mitochondrial DNA (mtDNA) is one of the most promising biomarkers of liquid biopsy. Mitochondria are highly abundant in human body, exceeding the number of human cells by 100–10,000 times. They play an essential role in the whole-body physiology, being involved in bioenergetics, apoptosis, innate immunity, networks of communication with different cell types and metabolic coordination. Owing to such fundamental involvement of mitochondria in human physiology, mtDNA mutations in general have a highly detrimental effect on cell viability. Nevertheless, the astronomical mitochondrial population size, lack of genetic mechanisms for effective control of mutations, genetic complementation and vegetative segregation of mtDNA establish an environment that supports a significant intra-host mitochondrial genetic heterogeneity, known as heteroplasmy (2). Some health conditions, such as cancer are potentially conducive to maintaining heteroplasmy. The intra-host mitochondrial genetic diversity detected in blood is very dynamic and may change at the rate usually observed in intra-host viral populations, rapidly responding to, for example, progression of cancer or hepatitis C virus infection (3-5). The dynamic nature of mitochondrial genetic heterogeneity in blood offers potential diagnostic opportunities for the detection of cancer and other health conditions (3,6). The fluid biopsy concept takes advantage of such opportunities and provides guiding principles for diagnosing and managing cancer using blood rather than solid tumor tissue, with several molecular approaches being developed for the direct detection of circulating mtDNA variants associated with cancer (7,8). We recently showed that heterogeneity at specially selected polymorphic mtDNA sites can be efficiently associated with liver cancer by means of machine learning, suggesting a different research direction towards development of novel cyber-molecular diagnostics (6). Such assays are basically complex computational models capable of extracting diagnostically relevant information from molecular data obtained using Ultra-Deep Sequencing (UDS) technologies. Molecular wet-laboratory assays generate diagnostic information directly from blood by detection of circulating specific sequence variants. Performance of wet-laboratory assays can be greatly afflicted by a limited presentation of tumor-derived genetic markers in blood (9), owing either to a low level of specific variants or to abundance of different mutations associated with cancer, reflecting the complex biological nature of this disease. Assays based on the identification of patterns in molecular data are potentially less Letter to the Editor
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习可以加速网络分子癌症诊断的发现和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence in periodontology and implantology—a narrative review Exploring the capabilities and limitations of large language models in nuclear medicine knowledge with primary focus on GPT-3.5, GPT-4 and Google Bard Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records Analysis of factors influencing maternal mortality and newborn health—a machine learning approach Efficient glioma grade prediction using learned features extracted from convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1