Anti-Acanthamoeba effect of potassium isostearate for use as a multipurpose solution.

IF 0.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biocontrol science Pub Date : 2020-01-01 DOI:10.4265/bio.25.73
Haruna Sasaki, Toshinari Koda, Hiroshi Morita
{"title":"Anti-Acanthamoeba effect of potassium isostearate for use as a multipurpose solution.","authors":"Haruna Sasaki,&nbsp;Toshinari Koda,&nbsp;Hiroshi Morita","doi":"10.4265/bio.25.73","DOIUrl":null,"url":null,"abstract":"<p><p>Acanthamoeba is one of the organisms that cause corneal infection. In this study, attention was focused on potassium isostearate (iso-C18K, a branched chain fatty acid salt) for use in a multipurpose solution (MPS) against Acanthamoeba. An anti-amoebic test against Acanthamoeba castellanii ATCC 30010 (trophozoites type) was conducted. As a result, a growth reduction effect of 4 log units (99.99% suppression) was observed after incubation with 150 mM (5.0 w/v%) iso-C18K for 10 minutes. Furthermore, after the amoeba suspension was mixed with iso-C18K, disruption of cell membranes were observed, and the minimum amoebacidal concentration (MAC) at that time was 9.6 mM (0.31 w/v%). To evaluate the effectiveness as an MPS, assessment by verification tests was conducted using contact lenses. Reducing the concentration of iso-C18K caused a decrease in the number of viable cells, which was confirmed at a MAC of 1.2 mM (0.039 w/v%).</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.25.73","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acanthamoeba is one of the organisms that cause corneal infection. In this study, attention was focused on potassium isostearate (iso-C18K, a branched chain fatty acid salt) for use in a multipurpose solution (MPS) against Acanthamoeba. An anti-amoebic test against Acanthamoeba castellanii ATCC 30010 (trophozoites type) was conducted. As a result, a growth reduction effect of 4 log units (99.99% suppression) was observed after incubation with 150 mM (5.0 w/v%) iso-C18K for 10 minutes. Furthermore, after the amoeba suspension was mixed with iso-C18K, disruption of cell membranes were observed, and the minimum amoebacidal concentration (MAC) at that time was 9.6 mM (0.31 w/v%). To evaluate the effectiveness as an MPS, assessment by verification tests was conducted using contact lenses. Reducing the concentration of iso-C18K caused a decrease in the number of viable cells, which was confirmed at a MAC of 1.2 mM (0.039 w/v%).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异硬脂酸钾作为多用途溶液的抗棘阿米巴作用。
棘阿米巴是引起角膜感染的微生物之一。在本研究中,重点研究了用于抗棘阿米巴多用途溶液(MPS)的异硬脂酸钾(iso-C18K,一种支链脂肪酸盐)。对滋养体型棘阿米巴(Acanthamoeba castellanii ATCC 30010)进行了抗阿米巴试验。结果表明,150 mM (5.0 w/v%) iso-C18K孵育10分钟后,生长抑制效果为4 log单位(99.99%)。此外,将阿米巴悬浮液与iso-C18K混合后,观察到细胞膜的破坏,此时的最小阿米巴浓度(MAC)为9.6 mM (0.31 w/v%)。为了评估MPS的有效性,使用隐形眼镜进行了验证测试。降低iso-C18K浓度导致活细胞数量减少,在MAC为1.2 mM (0.039 w/v%)时证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biocontrol science
Biocontrol science BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
2.60
自引率
8.30%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.
期刊最新文献
Inactivation of SARS-CoV-2 by Commercially Available Disinfectants and Cleaners. Remote Bactericidal Effect of Anatase TiO2 Photocatalytic Nanoparticles Annealed with Low-Temperature O2 Plasma. Simple and Rapid Detection of ESBL blaSHV gene from an Urban River in Tokyo by Loop-Mediated Isothermal Amplification. Use of ATP Bioluminescence Assay to Evaluate Oral Streptococci. The Effectiveness of Neutral Electrolyzed Water for Decontaminating the Spray Nozzles of Electric Tankless and Tank-Type Warm-Water Bidet Toilet Seats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1