Differential cellular proliferation underlies heterochronic generation of cranial diversity in phyllostomid bats.

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Evodevo Pub Date : 2020-06-02 eCollection Date: 2020-01-01 DOI:10.1186/s13227-020-00156-9
Jasmin Camacho, Rachel Moon, Samantha K Smith, Jacky D Lin, Charles Randolph, John J Rasweiler, Richard R Behringer, Arhat Abzhanov
{"title":"Differential cellular proliferation underlies heterochronic generation of cranial diversity in phyllostomid bats.","authors":"Jasmin Camacho, Rachel Moon, Samantha K Smith, Jacky D Lin, Charles Randolph, John J Rasweiler, Richard R Behringer, Arhat Abzhanov","doi":"10.1186/s13227-020-00156-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skull diversity in the neotropical leaf-nosed bats (Phyllostomidae) evolved through a heterochronic process called peramorphosis, with underlying causes varying by subfamily. The nectar-eating (subfamily Glossophaginae) and blood-eating (subfamily Desmondontinae) groups originate from insect-eating ancestors and generate their uniquely shaped faces and skulls by extending the ancestral ontogenetic program, appending new developmental stages and demonstrating peramorphosis by hypermorphosis. However, the fruit-eating phyllostomids (subfamilies Carollinae and Stenodermatinae) adjust their craniofacial development by speeding up certain developmental processes, displaying peramorphosis by acceleration. We hypothesized that these two forms of peramorphosis detected by our morphometric studies could be explained by differential growth and investigated cell proliferation during craniofacial morphogenesis.</p><p><strong>Results: </strong>We obtained cranial tissues from four wild-caught bat species representing a range of facial diversity and labeled mitotic cells using immunohistochemistry. During craniofacial development, all bats display a conserved spatiotemporal distribution of proliferative cells with distinguishable zones of elevated mitosis. These areas were identified as modules by the spatial distribution analysis. Ancestral state reconstruction of proliferation rates and patterns in the facial module between species provided support, and a degree of explanation, for the developmental mechanisms underlying the two models of peramorphosis. In the long-faced species, <i>Glossophaga soricina</i>, whose facial shape evolved by hypermorphosis, cell proliferation rate is maintained at lower levels and for a longer period of time compared to the outgroup species <i>Miniopterus natalensis</i>. In both species of studied short-faced fruit bats, <i>Carollia perspicillata</i> and <i>Artibeus jamaicensis</i>, which evolved under the acceleration model, cell proliferation rate is increased compared to the outgroup.</p><p><strong>Conclusions: </strong>This is the first study which links differential cellular proliferation and developmental modularity with heterochronic developmental changes, leading to the evolution of adaptive cranial diversity in an important group of mammals.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"11"},"PeriodicalIF":4.1000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-020-00156-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Skull diversity in the neotropical leaf-nosed bats (Phyllostomidae) evolved through a heterochronic process called peramorphosis, with underlying causes varying by subfamily. The nectar-eating (subfamily Glossophaginae) and blood-eating (subfamily Desmondontinae) groups originate from insect-eating ancestors and generate their uniquely shaped faces and skulls by extending the ancestral ontogenetic program, appending new developmental stages and demonstrating peramorphosis by hypermorphosis. However, the fruit-eating phyllostomids (subfamilies Carollinae and Stenodermatinae) adjust their craniofacial development by speeding up certain developmental processes, displaying peramorphosis by acceleration. We hypothesized that these two forms of peramorphosis detected by our morphometric studies could be explained by differential growth and investigated cell proliferation during craniofacial morphogenesis.

Results: We obtained cranial tissues from four wild-caught bat species representing a range of facial diversity and labeled mitotic cells using immunohistochemistry. During craniofacial development, all bats display a conserved spatiotemporal distribution of proliferative cells with distinguishable zones of elevated mitosis. These areas were identified as modules by the spatial distribution analysis. Ancestral state reconstruction of proliferation rates and patterns in the facial module between species provided support, and a degree of explanation, for the developmental mechanisms underlying the two models of peramorphosis. In the long-faced species, Glossophaga soricina, whose facial shape evolved by hypermorphosis, cell proliferation rate is maintained at lower levels and for a longer period of time compared to the outgroup species Miniopterus natalensis. In both species of studied short-faced fruit bats, Carollia perspicillata and Artibeus jamaicensis, which evolved under the acceleration model, cell proliferation rate is increased compared to the outgroup.

Conclusions: This is the first study which links differential cellular proliferation and developmental modularity with heterochronic developmental changes, leading to the evolution of adaptive cranial diversity in an important group of mammals.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞增殖的差异是噬叶蝠颅骨多样性异时生成的基础。
背景:新热带叶鼻蝠(Phyllostomidae)的头骨多样性是通过一种称为变态的异时过程进化而来的,其根本原因因亚科而异。食花蜜亚科(Glossophaginae)和食血亚科(Desmondontinae)起源于食昆虫的祖先,通过扩展祖先的个体发育程序,增加新的发育阶段,并通过超变态表现出变态,从而形成了独特的脸部和头骨。然而,食果类植食动物(Carollinae亚科和Stenodermatinae亚科)通过加快某些发育过程来调整它们的颅面发育,表现出加速变态。我们假设形态计量学研究发现的这两种变态形式可以通过颅面形态发生过程中的生长差异来解释,并对细胞增殖进行了调查:我们从四种野生蝙蝠中获取了代表面部多样性的颅骨组织,并使用免疫组织化学方法标记了有丝分裂细胞。在颅面部发育过程中,所有蝙蝠的增殖细胞在时空分布上都是一致的,都有明显的有丝分裂高发区。空间分布分析将这些区域确定为模块。对不同物种间面部模块的增殖率和模式进行的祖先状态重建为两种变态模式的发育机制提供了支持和一定程度的解释。长脸型物种Glossophaga soricina的脸型是通过超变态进化而来的,与外群物种Miniopterus natalensis相比,长脸型物种的细胞增殖率维持在较低的水平,而且持续时间较长。所研究的两种短面果蝠--Carollia perspicillata和Artibeus jamaicensis--都是在加速模式下进化的,与外群物种相比,它们的细胞增殖率都有所提高:这是第一项将细胞增殖差异和发育模块化与异时性发育变化联系起来的研究,它导致了哺乳动物中一个重要类群的适应性颅骨多样性的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
期刊最新文献
Conservation of the dehiscence zone gene regulatory network in dicots and the role of the SEEDSTICK ortholog of California poppy (Eschscholzia californica) in fruit development. The evolution of cephalic fins in manta rays and their relatives: functional evidence for initiation of domain splitting and modulation of the Wnt signaling pathway in the pectoral fin AER of the little skate. Expression of distal limb patterning genes in Hypsibius exemplaris indicate regionalization and suggest distal identity of tardigrade legs. Early embryonic development of the German cockroach Blattella germanica. Periderm fate and independence of tooth formation are conserved across osteichthyans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1