Genome wide meta-analysis of cDNA datasets reveals new target gene signatures of colorectal cancer based on systems biology approach.

IF 1.9 3区 生物学 Q2 BIOLOGY Journal of Biological Research-Thessaloniki Pub Date : 2020-06-08 eCollection Date: 2020-12-01 DOI:10.1186/s40709-020-00118-1
Umair Ilyas, Shaiq Uz Zaman, Reem Altaf, Humaira Nadeem, Syed Aun Muhammad
{"title":"Genome wide meta-analysis of cDNA datasets reveals new target gene signatures of colorectal cancer based on systems biology approach.","authors":"Umair Ilyas,&nbsp;Shaiq Uz Zaman,&nbsp;Reem Altaf,&nbsp;Humaira Nadeem,&nbsp;Syed Aun Muhammad","doi":"10.1186/s40709-020-00118-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer is known to be the most common type of cancer worldwide with high disease-related mortality. It is the third most common cancer in men and women and is the second major cause of death globally due to cancer. It is a complicated and fatal disease comprising of a group of molecular heterogeneous disorders.</p><p><strong>Results: </strong>This study identifies the potential biomarkers of CRC through differentially expressed analysis, system biology, and proteomic analysis. Ten publicly available microarray datasets were analyzed and seven potential biomarkers were identified from the list of differentially expressed genes having a <i>p</i> value < 0.05. The expression profiling and the functional enrichment analysis revealed the role of these genes in cell communication, signal transduction, and immune response. The protein-protein interaction showed the functional association of the source genes (CTNNB1, NNMT, PTCH1, CALD1, CXCL14, CXCL8, and TNFAIP3) with the target proteins, such as AXIN, MAPK, IL6, STAT, APC, GSK3B, and SHH.</p><p><strong>Conclusion: </strong>The integrated pathway analysis indicated the role of these genes in important physiological responses, such as cell cycle regulation, WNT, hedgehog, MAPK, and calcium signaling pathways during colorectal cancer. These pathways are involved in cell proliferation, chemotaxis, cellular growth, differentiation, tissue patterning, and cytokine production. The study shows the regulatory role of these genes in colorectal cancer and the pathways that can be effected after the dysregulation of these genes.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-020-00118-1","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-020-00118-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Background: Colorectal cancer is known to be the most common type of cancer worldwide with high disease-related mortality. It is the third most common cancer in men and women and is the second major cause of death globally due to cancer. It is a complicated and fatal disease comprising of a group of molecular heterogeneous disorders.

Results: This study identifies the potential biomarkers of CRC through differentially expressed analysis, system biology, and proteomic analysis. Ten publicly available microarray datasets were analyzed and seven potential biomarkers were identified from the list of differentially expressed genes having a p value < 0.05. The expression profiling and the functional enrichment analysis revealed the role of these genes in cell communication, signal transduction, and immune response. The protein-protein interaction showed the functional association of the source genes (CTNNB1, NNMT, PTCH1, CALD1, CXCL14, CXCL8, and TNFAIP3) with the target proteins, such as AXIN, MAPK, IL6, STAT, APC, GSK3B, and SHH.

Conclusion: The integrated pathway analysis indicated the role of these genes in important physiological responses, such as cell cycle regulation, WNT, hedgehog, MAPK, and calcium signaling pathways during colorectal cancer. These pathways are involved in cell proliferation, chemotaxis, cellular growth, differentiation, tissue patterning, and cytokine production. The study shows the regulatory role of these genes in colorectal cancer and the pathways that can be effected after the dysregulation of these genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于系统生物学方法的cDNA数据集全基因组荟萃分析揭示了结直肠癌新的靶基因特征。
背景:众所周知,结直肠癌是世界上最常见的癌症类型,与疾病相关的死亡率很高。它是男性和女性中第三大最常见的癌症,也是全球癌症导致死亡的第二大原因。它是一种复杂而致命的疾病,由一组分子异质性疾病组成。结果:本研究通过差异表达分析、系统生物学和蛋白质组学分析确定了CRC的潜在生物标志物。我们分析了10个公开的微阵列数据集,并从具有p值的差异表达基因列表中鉴定出7个潜在的生物标志物。结论:综合通路分析表明这些基因在结直肠癌中重要的生理反应中发挥作用,如细胞周期调节、WNT、hedgehog、MAPK和钙信号通路。这些途径涉及细胞增殖、趋化、细胞生长、分化、组织模式和细胞因子的产生。该研究显示了这些基因在结直肠癌中的调节作用以及这些基因失调后可能受到影响的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology. Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.
期刊最新文献
Circ_0000620 acts as an oncogenic factor in gastric cancer through regulating MMP2 expression via sponging miR-671-5p. Peroxiredoxin-6 regulates p38-mediated epithelial-mesenchymal transition in HCT116 colon cancer cells. Nesfatin-1 protects H9c2 cardiomyocytes against cobalt chloride-induced hypoxic injury by modulating the MAPK and Notch1 signaling pathways. LncRNA FBXL19-AS1 promotes proliferation and metastasis of cervical cancer through upregulating COL1A1 as a sponge of miR-193a-5p. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1