{"title":"Restriction point regulation at the crossroads between quiescence and cell proliferation.","authors":"Betheney R Pennycook, Alexis R Barr","doi":"10.1002/1873-3468.13867","DOIUrl":null,"url":null,"abstract":"<p><p>The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.13867","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.