Selection of established tumour cells through narrow diameter micropores enriches for elevated Ras/Raf/MEK/ERK MAPK signalling and enhanced tumour growth.

Q2 Biochemistry, Genetics and Molecular Biology Small GTPases Pub Date : 2021-07-01 Epub Date: 2020-06-22 DOI:10.1080/21541248.2020.1780108
Dominika A Rudzka, Susan Mason, Matthew Neilson, Lynn McGarry, Gabriela Kalna, Ann Hedley, Karen Blyth, Michael F Olson
{"title":"Selection of established tumour cells through narrow diameter micropores enriches for elevated Ras/Raf/MEK/ERK MAPK signalling and enhanced tumour growth.","authors":"Dominika A Rudzka, Susan Mason, Matthew Neilson, Lynn McGarry, Gabriela Kalna, Ann Hedley, Karen Blyth, Michael F Olson","doi":"10.1080/21541248.2020.1780108","DOIUrl":null,"url":null,"abstract":"<p><p>As normal cells become cancer cells, and progress towards malignancy, they become progressively softer. Advantages of this change are that tumour cells become more deformable, and better able to move through narrow constraints. We designed a positive selection strategy that enriched for cells which could move through narrow diameter micropores to identify cell phenotypes that enabled constrained migration. Using human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, we found that micropore selection favoured cells with relatively higher Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signalling, which affected actin cytoskeleton organization, focal adhesion density and cell elasticity. In this follow-up study, we provide further evidence that selection through micropores enriched for cells with altered cell morphology and adhesion. Additional analysis of RNA sequencing data revealed a set of transcripts associated with small cell size that was independent of constrained migration. Gene set enrichment analysis identified the 'matrisome' as the most significantly altered gene set linked with small size. When grown as orthotopic xenograft tumours in immunocompromised mice, micropore selected cells grew significantly faster than Parent or Flow-Sorted cells. Using mathematical modelling, we determined that there is an interaction between 1) the cell to gap size ratio; 2) the bending rigidity of the cell, which enable movement through narrow gaps. These results extend our previous conclusion that Ras/Raf/MEK/ERK MAPK signalling has a significant role in regulating cell biomechanics by showing that the selective pressure of movement through narrow gaps also enriches for increased tumour growth <i>in vivo</i>.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"12 4","pages":"294-310"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2020.1780108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

As normal cells become cancer cells, and progress towards malignancy, they become progressively softer. Advantages of this change are that tumour cells become more deformable, and better able to move through narrow constraints. We designed a positive selection strategy that enriched for cells which could move through narrow diameter micropores to identify cell phenotypes that enabled constrained migration. Using human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, we found that micropore selection favoured cells with relatively higher Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signalling, which affected actin cytoskeleton organization, focal adhesion density and cell elasticity. In this follow-up study, we provide further evidence that selection through micropores enriched for cells with altered cell morphology and adhesion. Additional analysis of RNA sequencing data revealed a set of transcripts associated with small cell size that was independent of constrained migration. Gene set enrichment analysis identified the 'matrisome' as the most significantly altered gene set linked with small size. When grown as orthotopic xenograft tumours in immunocompromised mice, micropore selected cells grew significantly faster than Parent or Flow-Sorted cells. Using mathematical modelling, we determined that there is an interaction between 1) the cell to gap size ratio; 2) the bending rigidity of the cell, which enable movement through narrow gaps. These results extend our previous conclusion that Ras/Raf/MEK/ERK MAPK signalling has a significant role in regulating cell biomechanics by showing that the selective pressure of movement through narrow gaps also enriches for increased tumour growth in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过窄直径微孔选择已确定的肿瘤细胞,可富集升高的 Ras/Raf/MEK/ERK MAPK 信号并促进肿瘤生长。
当正常细胞变成癌细胞,并向恶性发展时,它们会变得越来越柔软。这种变化的好处是,肿瘤细胞变得更易变形,更能在狭窄的限制条件下移动。我们设计了一种正向选择策略,富集能够通过狭窄直径微孔移动的细胞,以识别能够实现受限迁移的细胞表型。我们利用人体 MDA MB 231 乳腺癌和 MDA MB 435 黑色素瘤癌细胞,发现微孔选择有利于 Ras/Raf/MEK/ERK 丝裂原活化蛋白激酶(MAPK)信号相对较高的细胞,这影响了肌动蛋白细胞骨架组织、病灶粘附密度和细胞弹性。在这项后续研究中,我们提供了进一步的证据,证明通过微孔选择的细胞具有改变的细胞形态和粘附性。对 RNA 测序数据的其他分析显示,一组转录本与细胞体积小有关,与受限迁移无关。基因组富集分析发现,"matrisome "是与细胞体积小有关的变化最显著的基因组。在免疫力低下的小鼠体内生长为正位异种移植肿瘤时,微孔选择细胞的生长速度明显快于母细胞或流式细胞。通过数学建模,我们确定:1)细胞与间隙的大小比;2)细胞的弯曲刚度之间存在相互作用,这使得细胞能在狭窄的间隙中移动。这些结果扩展了我们之前的结论,即 Ras/Raf/MEK/ERK MAPK 信号在调节细胞生物力学方面起着重要作用,表明通过狭窄间隙运动的选择性压力也会增加体内肿瘤的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small GTPases
Small GTPases Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.10
自引率
0.00%
发文量
6
期刊最新文献
PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. ACKnowledging the role of the Activated-Cdc42 associated kinase (ACK) in regulating protein stability in cancer. Serine phosphorylation of the RhoGEF Trio stabilizes endothelial cell-cell junctions. Rab6-mediated retrograde trafficking from the Golgi: the trouble with tubules. To stay in shape and keep moving: MLL emerges as a new transcriptional regulator of Rho GTPases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1