Alessandra Barreto da Silva, Michelle Miniter, William Thom, Rachel E. Hewitt, John Wills, Ravin Jugdaohsingh, Jonathan J. Powell
{"title":"Gastrointestinal absorption and toxicity of nanoparticles and microparticles: Myth, reality and pitfalls explored through titanium dioxide","authors":"Alessandra Barreto da Silva, Michelle Miniter, William Thom, Rachel E. Hewitt, John Wills, Ravin Jugdaohsingh, Jonathan J. Powell","doi":"10.1016/j.cotox.2020.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>Daily oral exposure to vast numbers (>10<sup>13</sup><span>/adult/day) of micron or nanosized persistent particles has become the norm for many populations. Significant airborne particle<span> exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO</span></span><sub>2</sub><span>), which is an additive to some foods, capsules<span>, tablets, and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialized intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it is likely that a degree of absorption goes beyond this, that is, lymphatics to blood circulation to tissues. The authors of this study critically review the evidence and pathways. Regarding potential adverse effects, the authors primary message, for today's state-of-the-art, is that </span></span><em>in vivo</em> models have not been good enough and at times woeful. The authors provide a ‘caveats list’ to improve approaches and experimentation and illustrate why studies on biomarkers of particle uptake, and lower gut/mesenteric lymph nodes as targets, should be prioritized.</p></div>","PeriodicalId":37736,"journal":{"name":"Current Opinion in Toxicology","volume":"19 ","pages":"Pages 112-120"},"PeriodicalIF":3.6000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2020.02.007","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202020300152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 17
Abstract
Daily oral exposure to vast numbers (>1013/adult/day) of micron or nanosized persistent particles has become the norm for many populations. Significant airborne particle exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO2), which is an additive to some foods, capsules, tablets, and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialized intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it is likely that a degree of absorption goes beyond this, that is, lymphatics to blood circulation to tissues. The authors of this study critically review the evidence and pathways. Regarding potential adverse effects, the authors primary message, for today's state-of-the-art, is that in vivo models have not been good enough and at times woeful. The authors provide a ‘caveats list’ to improve approaches and experimentation and illustrate why studies on biomarkers of particle uptake, and lower gut/mesenteric lymph nodes as targets, should be prioritized.
期刊介绍:
The aims and scope of Current Opinion in Toxicology is to systematically provide the reader with timely and provocative views and opinions of the highest qualified and recognized experts on current advances in selected topics within the field of toxicology. The goal is that Current Opinion in Toxicology will be an invaluable source of information and perspective for researchers, teachers, managers and administrators, policy makers and students. Division of the subject into sections: For this purpose, the scope of Toxicology is divided into six selected high impact themed sections, each of which is reviewed once a year: Mechanistic Toxicology, Metabolic Toxicology, Risk assessment in Toxicology, Genomic Toxicology, Systems Toxicology, Translational Toxicology.