Alyssa M. Worland , Jeffrey J. Czajka , Yun Xing , Willie F. Harper Jr. , Aryiana Moore , Zhengyang Xiao , Zhenlin Han , Yechun Wang , Wei Wen Su , Yinjie J. Tang
{"title":"Analysis of Yarrowia lipolytica growth, catabolism, and terpenoid biosynthesis during utilization of lipid-derived feedstock","authors":"Alyssa M. Worland , Jeffrey J. Czajka , Yun Xing , Willie F. Harper Jr. , Aryiana Moore , Zhengyang Xiao , Zhenlin Han , Yechun Wang , Wei Wen Su , Yinjie J. Tang","doi":"10.1016/j.mec.2020.e00130","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs biomass growth analyses and <sup>13</sup>C-isotope tracing to investigate lipid feedstock utilization by <em>Yarrowia lipolytica</em>. Compared to glucose, oil-feedstock in the minimal medium increases the yeast's biomass yields and cell sizes, but decreases its protein content (<20% of total biomass) and enzyme abundances for product synthesis. Labeling results indicate a segregated metabolic network (the glycolysis vs. the TCA cycle) during co-catabolism of sugars (glucose or glycerol) with fatty acid substrates, which facilitates resource allocations for biosynthesis without catabolite repressions. This study has also examined the performance of a β-carotene producing strain in different growth mediums. Canola oil-containing yeast-peptone (YP) has resulted in the best β-carotene titer (121 ± 13 mg/L), two-fold higher than the glucose based YP medium. These results highlight the potential of <em>Y. lipolytica</em> for the valorization of waste-derived lipid feedstock.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"11 ","pages":"Article e00130"},"PeriodicalIF":3.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00130","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030120300080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
This study employs biomass growth analyses and 13C-isotope tracing to investigate lipid feedstock utilization by Yarrowia lipolytica. Compared to glucose, oil-feedstock in the minimal medium increases the yeast's biomass yields and cell sizes, but decreases its protein content (<20% of total biomass) and enzyme abundances for product synthesis. Labeling results indicate a segregated metabolic network (the glycolysis vs. the TCA cycle) during co-catabolism of sugars (glucose or glycerol) with fatty acid substrates, which facilitates resource allocations for biosynthesis without catabolite repressions. This study has also examined the performance of a β-carotene producing strain in different growth mediums. Canola oil-containing yeast-peptone (YP) has resulted in the best β-carotene titer (121 ± 13 mg/L), two-fold higher than the glucose based YP medium. These results highlight the potential of Y. lipolytica for the valorization of waste-derived lipid feedstock.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.