Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application.

Jan C Peeken, Benedikt Wiestler, Stephanie E Combs
{"title":"Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application.","authors":"Jan C Peeken,&nbsp;Benedikt Wiestler,&nbsp;Stephanie E Combs","doi":"10.1007/978-3-030-42618-7_24","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging plays an imminent role in today's radiation oncology workflow. Predominantly based on semantic image analysis, malignant tumors are diagnosed, staged, and therapy decisions are made. The field of \"radiomics\" promises to extract complementary, objective information from medical images. In radiomics, predefined quantitative features including intensity statistics, texture, shape, or filtering techniques are combined into statistical or machine learning models to predict clinical or biological outcomes. Alternatively, deep neural networks can directly analyze medical images and provide predictions. A large number of research studies could demonstrate that radiomics prediction models may provide significant benefits in the radiation oncology workflow including diagnostics, tumor characterization, target volume segmentation, prognostic stratification, and prediction of therapy response or treatment-related toxicities. This chapter provides an overview of techniques within the radiomics toolbox, potential clinical application, and current limitations. A literature overview of four selected malignant entities including non-small cell lung cancer, head and neck squamous cell carcinomas, soft tissue sarcomas, and gliomas is given.</p>","PeriodicalId":39880,"journal":{"name":"Recent Results in Cancer Research","volume":"216 ","pages":"773-794"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Results in Cancer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-42618-7_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 16

Abstract

Medical imaging plays an imminent role in today's radiation oncology workflow. Predominantly based on semantic image analysis, malignant tumors are diagnosed, staged, and therapy decisions are made. The field of "radiomics" promises to extract complementary, objective information from medical images. In radiomics, predefined quantitative features including intensity statistics, texture, shape, or filtering techniques are combined into statistical or machine learning models to predict clinical or biological outcomes. Alternatively, deep neural networks can directly analyze medical images and provide predictions. A large number of research studies could demonstrate that radiomics prediction models may provide significant benefits in the radiation oncology workflow including diagnostics, tumor characterization, target volume segmentation, prognostic stratification, and prediction of therapy response or treatment-related toxicities. This chapter provides an overview of techniques within the radiomics toolbox, potential clinical application, and current limitations. A literature overview of four selected malignant entities including non-small cell lung cancer, head and neck squamous cell carcinomas, soft tissue sarcomas, and gliomas is given.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影像引导放射肿瘤学:放射组学在临床应用中的潜力。
医学成像在今天的放射肿瘤学工作流程中发挥着迫在眉睫的作用。主要基于语义图像分析,恶性肿瘤的诊断,分期,并作出治疗决定。放射组学有望从医学图像中提取互补的客观信息。在放射组学中,预定义的定量特征,包括强度统计、纹理、形状或过滤技术,被结合到统计或机器学习模型中,以预测临床或生物学结果。或者,深度神经网络可以直接分析医学图像并提供预测。大量的研究表明,放射组学预测模型可以在放射肿瘤学工作流程中提供显著的好处,包括诊断、肿瘤表征、靶体积分割、预后分层、治疗反应或治疗相关毒性的预测。本章概述了放射组学工具箱中的技术,潜在的临床应用和当前的局限性。本文对非小细胞肺癌、头颈部鳞状细胞癌、软组织肉瘤、胶质瘤等四种恶性肿瘤进行文献综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
Surgery. RAW ATTITUDES: Socio-Cultures, Altered Landscapes, and Changing Perceptions of an Underestimated Disease. Opisthorchis viverrini Life Cycle, Distribution, Systematics, and Population Genetics. Pathology of Cholangiocarcinoma. Digital Innovations (Isan Cohort).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1