J.L. Vilas , J. Oton , C. Messaoudi , R. Melero , P. Conesa , E. Ramirez-Aportela , J. Mota , M. Martinez , A. Jimenez , R. Marabini , J.M. Carazo , J. Vargas , C.O.S. Sorzano
{"title":"Measurement of local resolution in electron tomography","authors":"J.L. Vilas , J. Oton , C. Messaoudi , R. Melero , P. Conesa , E. Ramirez-Aportela , J. Mota , M. Martinez , A. Jimenez , R. Marabini , J.M. Carazo , J. Vargas , C.O.S. Sorzano","doi":"10.1016/j.yjsbx.2019.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Resolution (global and local) is one of the most reported metrics of quality measurement in Single Particle Analysis (SPA). However, in electron tomography, the situation is different and its computation is not straightforward. Typically, resolution estimation is global and, therefore, reduces the assessment of a whole tomogram to a single number. However, it is known that tomogram quality is spatially variant. Still, up to our knowledge, a method to estimate local quality metrics in tomography is lacking. This work introduces <em>MonoTomo</em>, a method developed to estimate locally in a tomogram the highest reliable frequency component, expressed as a form of local resolution. The fundamentals lie in a local analysis of the density map via monogenic signals, which, in analogy to <em>MonoRes</em>, allows for local estimations. Results with experimental data show that the local resolution range that MonoTomo casts agrees with reported resolution values for experimental data sets, with the advantage of providing a local estimation. A range of applications of <em>MonoTomo</em> are suggested for further exploration.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100016"},"PeriodicalIF":3.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2019.100016","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152419300145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Resolution (global and local) is one of the most reported metrics of quality measurement in Single Particle Analysis (SPA). However, in electron tomography, the situation is different and its computation is not straightforward. Typically, resolution estimation is global and, therefore, reduces the assessment of a whole tomogram to a single number. However, it is known that tomogram quality is spatially variant. Still, up to our knowledge, a method to estimate local quality metrics in tomography is lacking. This work introduces MonoTomo, a method developed to estimate locally in a tomogram the highest reliable frequency component, expressed as a form of local resolution. The fundamentals lie in a local analysis of the density map via monogenic signals, which, in analogy to MonoRes, allows for local estimations. Results with experimental data show that the local resolution range that MonoTomo casts agrees with reported resolution values for experimental data sets, with the advantage of providing a local estimation. A range of applications of MonoTomo are suggested for further exploration.