p18/Lamtor1-mTORC1 Signaling Controls Development of Mucin-producing Goblet Cells in the Intestine.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2020-01-01 DOI:10.1247/csf.20018
Shizuka Ito, Shigeyuki Nada, Daisuke Yamazaki, Tetsuya Kimura, Kentaro Kajiwara, Hiroaki Miki, Masato Okada
{"title":"p18/Lamtor1-mTORC1 Signaling Controls Development of Mucin-producing Goblet Cells in the Intestine.","authors":"Shizuka Ito, Shigeyuki Nada, Daisuke Yamazaki, Tetsuya Kimura, Kentaro Kajiwara, Hiroaki Miki, Masato Okada","doi":"10.1247/csf.20018","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanistic target of rapamycin complex 1 (mTORC1) plays a pivotal role in controlling cell growth and metabolism in response to nutrients and growth factors. The activity of mTORC1 is dually regulated by amino acids and growth factor signaling, and amino acid-dependent mTORC1 activity is regulated by mTORC1 interaction with the Ragulator-Rag GTPase complex, which is localized to the surface of lysosomes via a membrane-anchored protein, p18/Lamtor1. However, the physiological function of p18-Ragulator-dependent mTORC1 signaling remains elusive. The present study evaluated the function of p18-mediated mTORC1 signaling in the intestinal epithelia using p18 conditional knockout mice. In p18 knockout colonic crypts, mTORC1 was delocalized from lysosomes, and in vivo mTORC1 activity was markedly decreased. Histologically, p18 knockout crypts exhibited significantly increased proliferating cells and dramatically decreased mucin-producing goblet cells, while overall crypt architecture and enteroendocrine cell differentiation were unaffected. Furthermore, p18 knockout crypts normally expressed transcription factors implicated in crypt differentiation, such as Cdx2 and Klf4, indicating that p18 ablation did not affect the genetic program of cell differentiation. Analysis of colon crypt organoid cultures revealed that both p18 ablation and rapamycin treatment robustly suppressed development of mucin-producing goblet cells. Hence, p18-mediated mTORC1 signaling could promote the anabolic metabolism required for robust mucin production in goblet cells to protect the intestinal epithelia from various external stressors.Key words: mTORC1, p18/lamtor1, intestinal epithelium, goblet cells, mucin.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511045/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.20018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

Mechanistic target of rapamycin complex 1 (mTORC1) plays a pivotal role in controlling cell growth and metabolism in response to nutrients and growth factors. The activity of mTORC1 is dually regulated by amino acids and growth factor signaling, and amino acid-dependent mTORC1 activity is regulated by mTORC1 interaction with the Ragulator-Rag GTPase complex, which is localized to the surface of lysosomes via a membrane-anchored protein, p18/Lamtor1. However, the physiological function of p18-Ragulator-dependent mTORC1 signaling remains elusive. The present study evaluated the function of p18-mediated mTORC1 signaling in the intestinal epithelia using p18 conditional knockout mice. In p18 knockout colonic crypts, mTORC1 was delocalized from lysosomes, and in vivo mTORC1 activity was markedly decreased. Histologically, p18 knockout crypts exhibited significantly increased proliferating cells and dramatically decreased mucin-producing goblet cells, while overall crypt architecture and enteroendocrine cell differentiation were unaffected. Furthermore, p18 knockout crypts normally expressed transcription factors implicated in crypt differentiation, such as Cdx2 and Klf4, indicating that p18 ablation did not affect the genetic program of cell differentiation. Analysis of colon crypt organoid cultures revealed that both p18 ablation and rapamycin treatment robustly suppressed development of mucin-producing goblet cells. Hence, p18-mediated mTORC1 signaling could promote the anabolic metabolism required for robust mucin production in goblet cells to protect the intestinal epithelia from various external stressors.Key words: mTORC1, p18/lamtor1, intestinal epithelium, goblet cells, mucin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
p18/Lamtor1-mTORC1信号传导控制着肠道中产生黏蛋白的上皮细胞的发育。
rapamycin复合体1 (Mechanistic target of rapamycin complex 1, mTORC1)在细胞对营养物质和生长因子的反应中,在控制细胞生长和代谢中起关键作用。mTORC1的活性受到氨基酸和生长因子信号的双重调节,氨基酸依赖性的mTORC1活性受到mTORC1与调节因子- rag GTPase复合物相互作用的调节,该复合物通过膜锚定蛋白p18/Lamtor1定位于溶酶体表面。然而,p18-调节因子依赖的mTORC1信号的生理功能仍然难以捉摸。本研究利用p18条件敲除小鼠,评估了p18介导的mTORC1信号在肠上皮中的功能。在p18基因敲除的结肠隐窝中,mTORC1从溶酶体中脱位,体内mTORC1活性明显降低。组织学上,p18基因敲除后的隐窝增殖细胞显著增加,产生黏液的杯状细胞显著减少,而整体隐窝结构和肠内分泌细胞分化未受影响。此外,p18敲除隐窝正常表达与隐窝分化相关的转录因子,如Cdx2和Klf4,这表明p18敲除不影响细胞分化的遗传程序。结肠隐窝类器官培养分析显示,p18消融和雷帕霉素治疗均可有效抑制产生黏液的杯状细胞的发育。因此,p18介导的mTORC1信号传导可以促进杯状细胞中强大的粘蛋白产生所需的合成代谢,以保护肠上皮免受各种外部应激源的影响。关键词:mTORC1, p18/lamtor1,肠上皮,杯状细胞,粘蛋白
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1