{"title":"Three Dimensional Binary Edge Feature Representation for Pain Expression Analysis.","authors":"Xing Zhang, Lijun Yin, Jeffrey F Cohn","doi":"10.1109/fg.2015.7163107","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic pain expression recognition is a challenging task for pain assessment and diagnosis. Conventional 2D-based approaches to automatic pain detection lack robustness to the moderate to large head pose variation and changes in illumination that are common in real-world settings and with few exceptions omit potentially informative temporal information. In this paper, we propose an innovative 3D binary edge feature (3D-BE) to represent high-resolution 3D dynamic facial expression. To exploit temporal information, we apply a latent-dynamic conditional random field approach with the 3D-BE. The resulting pain expression detection system proves that 3D-BE represents the pain facial features well, and illustrates the potential of noncontact pain detection from 3D facial expression data.</p>","PeriodicalId":91494,"journal":{"name":"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/fg.2015.7163107","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fg.2015.7163107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Automatic pain expression recognition is a challenging task for pain assessment and diagnosis. Conventional 2D-based approaches to automatic pain detection lack robustness to the moderate to large head pose variation and changes in illumination that are common in real-world settings and with few exceptions omit potentially informative temporal information. In this paper, we propose an innovative 3D binary edge feature (3D-BE) to represent high-resolution 3D dynamic facial expression. To exploit temporal information, we apply a latent-dynamic conditional random field approach with the 3D-BE. The resulting pain expression detection system proves that 3D-BE represents the pain facial features well, and illustrates the potential of noncontact pain detection from 3D facial expression data.