Investigating the Role of Mucin as Frontline Defense of Mucosal Surfaces against Mycobacterium avium Subsp. hominissuis.

IF 1.1 Q4 MICROBIOLOGY Journal of Pathogens Pub Date : 2020-06-29 eCollection Date: 2020-01-01 DOI:10.1155/2020/9451591
Jessica Bechler, Luiz E Bermudez
{"title":"Investigating the Role of Mucin as Frontline Defense of Mucosal Surfaces against <i>Mycobacterium avium</i> Subsp. <i>hominissuis</i>.","authors":"Jessica Bechler,&nbsp;Luiz E Bermudez","doi":"10.1155/2020/9451591","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium avium</i> is a human and animal pathogen that infects the host through the mucosal surfaces. Past work has demonstrated that the bacterium can interact with both the respiratory and gastrointestinal tracts. Those surfaces in the body are covered by a bilayer of a glycoprotein, mucin, which works as a physical barrier and a gel which contains antibacterial and antivirus properties. This current work shows that different strains of <i>M</i>. <i>avium</i>, in contrast to <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, and <i>Listeria monocytogenes</i>, are not able to bind to mucins, MUC2 and MUC5b, the main mucins in the gastrointestinal and respiratory tracts, respectively. The lack of binding is due to the characteristics of the cell wall and is impaired by altering lipids, proteins, or glycolipids. <i>M</i>. <i>avium</i>, in contrast to <i>E</i>. <i>coli</i>, interacts with epithelial cells equally in the presence or absence of the mucin, suggesting that the cell wall of the pathogen can facilitate the bacterial movement through the mucin layer, towards the mucosal wall. In conclusion, the study has shown that <i>M</i>. <i>avium</i> can avoid the mucin barrier, which explains its ability to interact with the mucosal epithelium, even in absence of motion-related structures.</p>","PeriodicalId":16788,"journal":{"name":"Journal of Pathogens","volume":"2020 ","pages":"9451591"},"PeriodicalIF":1.1000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9451591","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathogens","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9451591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Mycobacterium avium is a human and animal pathogen that infects the host through the mucosal surfaces. Past work has demonstrated that the bacterium can interact with both the respiratory and gastrointestinal tracts. Those surfaces in the body are covered by a bilayer of a glycoprotein, mucin, which works as a physical barrier and a gel which contains antibacterial and antivirus properties. This current work shows that different strains of M. avium, in contrast to Escherichia coli, Pseudomonas aeruginosa, and Listeria monocytogenes, are not able to bind to mucins, MUC2 and MUC5b, the main mucins in the gastrointestinal and respiratory tracts, respectively. The lack of binding is due to the characteristics of the cell wall and is impaired by altering lipids, proteins, or glycolipids. M. avium, in contrast to E. coli, interacts with epithelial cells equally in the presence or absence of the mucin, suggesting that the cell wall of the pathogen can facilitate the bacterial movement through the mucin layer, towards the mucosal wall. In conclusion, the study has shown that M. avium can avoid the mucin barrier, which explains its ability to interact with the mucosal epithelium, even in absence of motion-related structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探讨粘蛋白在黏膜表面抗鸟分枝杆菌亚群一线防御中的作用。hominissuis。
鸟分枝杆菌是一种人类和动物病原体,通过粘膜表面感染宿主。过去的研究表明,这种细菌可以与呼吸道和胃肠道相互作用。身体的这些表面覆盖着一层糖蛋白、粘蛋白和一种含有抗菌和抗病毒特性的凝胶,粘蛋白是一种物理屏障。目前的研究表明,与大肠杆菌、铜绿假单胞菌和单核增生李斯特菌不同,不同菌株的鸟分枝杆菌不能分别与胃肠道和呼吸道的主要粘蛋白MUC2和MUC5b结合。缺乏结合是由于细胞壁的特性,并通过改变脂质、蛋白质或糖脂质而受损。与大肠杆菌不同,无论粘蛋白存在与否,鸟分枝杆菌与上皮细胞的相互作用都是一样的,这表明病原体的细胞壁可以促进细菌通过粘蛋白层向粘膜壁移动。总之,该研究表明,M. avium可以避开粘蛋白屏障,这解释了即使在没有运动相关结构的情况下,它也能与粘膜上皮相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pathogens
Journal of Pathogens MICROBIOLOGY-
自引率
0.00%
发文量
4
审稿时长
15 weeks
期刊最新文献
Fermented Polyherbal Formulation Restored Ricinoleic Acid-Induced Diarrhea in Sprague Dawley Rats and Exhibited In Vitro Antibacterial Effect on Multiple Antibiotic-Resistant Gastrointestinal Pathogens. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. Detection of Biofilm Production and Antibiotic Susceptibility Pattern among Clinically Isolated Staphylococcus aureus. Seroprevalence of Human Brucellosis among Syrian Refugees in Jordan, 2022 Characteristics of Escherichia coli Isolated from Intestinal Microbiota Children of 0–5 Years Old in the Commune of Abomey-Calavi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1