Godfred Kwesi Teye, Williams Kweku Darkwah, Huang Jingyu, Li Ke, Yi Li
{"title":"Photodegradation of Pharmaceutical and Personal Care Products (PPCPs) and Antibacterial Activity in Water by Transition Metals.","authors":"Godfred Kwesi Teye, Williams Kweku Darkwah, Huang Jingyu, Li Ke, Yi Li","doi":"10.1007/398_2020_47","DOIUrl":null,"url":null,"abstract":"<p><p>The intensity of emerging pollutants such as pharmaceuticals and personal care products (PPCPs) in the aquatic and terrestrial environment is a major source of concern to researchers. The current conventional methods of wastewater treatment plants are considered not efficient enough in the complete removal of the recalcitrant contaminants from water. The use of modified transition metals in visible responsive synthesis to degrade PPCPs and other pollutants (organic and inorganic) is considered as a developing green chemistry and sustainable technology. Hence, this review presents the state-of-the-art discussion on the novel photodegradation of PPCPs, and antibacterial activities of transition metal-modified magnetite materials for wastewater treatment, and suggested directions for the future. Transition metal-modified magnetite nanostructured photocatalysis is identified as one of the best candidates employed in advanced oxidation processes (AOPs) for wastewater treatment and has been found to efficiently destroy bacterial spores and effectively remove recalcitrant pollutants in water. Therefore, this article hopes to contribute scientific knowledge along with existing ones on advanced mechanisms and technology used in wastewater treatment.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"254 ","pages":"131-162"},"PeriodicalIF":6.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2020_47","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/398_2020_47","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
The intensity of emerging pollutants such as pharmaceuticals and personal care products (PPCPs) in the aquatic and terrestrial environment is a major source of concern to researchers. The current conventional methods of wastewater treatment plants are considered not efficient enough in the complete removal of the recalcitrant contaminants from water. The use of modified transition metals in visible responsive synthesis to degrade PPCPs and other pollutants (organic and inorganic) is considered as a developing green chemistry and sustainable technology. Hence, this review presents the state-of-the-art discussion on the novel photodegradation of PPCPs, and antibacterial activities of transition metal-modified magnetite materials for wastewater treatment, and suggested directions for the future. Transition metal-modified magnetite nanostructured photocatalysis is identified as one of the best candidates employed in advanced oxidation processes (AOPs) for wastewater treatment and has been found to efficiently destroy bacterial spores and effectively remove recalcitrant pollutants in water. Therefore, this article hopes to contribute scientific knowledge along with existing ones on advanced mechanisms and technology used in wastewater treatment.
期刊介绍:
Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology.
•Standing on a 55+ year history of publishing environmental toxicology reviews
•Now publishing in journal format boasting rigorous review and expanded editorial board
•Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants
•Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors