Coarse Graining of Data via Inhomogeneous Diffusion Condensation.

Nathan Brugnone, Alex Gonopolskiy, Mark W Moyle, Manik Kuchroo, David van Dijk, Kevin R Moon, Daniel Colon-Ramos, Guy Wolf, Matthew J Hirn, Smita Krishnaswamy
{"title":"Coarse Graining of Data via Inhomogeneous Diffusion Condensation.","authors":"Nathan Brugnone, Alex Gonopolskiy, Mark W Moyle, Manik Kuchroo, David van Dijk, Kevin R Moon, Daniel Colon-Ramos, Guy Wolf, Matthew J Hirn, Smita Krishnaswamy","doi":"10.1109/BigData47090.2019.9006013","DOIUrl":null,"url":null,"abstract":"<p><p>Big data often has emergent structure that exists at multiple levels of abstraction, which are useful for characterizing complex interactions and dynamics of the observations. Here, we consider multiple levels of abstraction via a multiresolution geometry of data points at different granularities. To construct this geometry we define a time-inhomogemeous diffusion process that effectively condenses data points together to uncover nested groupings at larger and larger granularities. This inhomogeneous process creates a deep cascade of intrinsic low pass filters on the data affinity graph that are applied in sequence to gradually eliminate local variability while adjusting the learned data geometry to increasingly coarser resolutions. We provide visualizations to exhibit our method as a \"continuously-hierarchical\" clustering with directions of eliminated variation highlighted at each step. The utility of our algorithm is demonstrated via neuronal data condensation, where the constructed multiresolution data geometry uncovers the organization, grouping, and connectivity between neurons.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":" ","pages":"2624-2633"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398322/pdf/nihms-1612101.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigData47090.2019.9006013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Big data often has emergent structure that exists at multiple levels of abstraction, which are useful for characterizing complex interactions and dynamics of the observations. Here, we consider multiple levels of abstraction via a multiresolution geometry of data points at different granularities. To construct this geometry we define a time-inhomogemeous diffusion process that effectively condenses data points together to uncover nested groupings at larger and larger granularities. This inhomogeneous process creates a deep cascade of intrinsic low pass filters on the data affinity graph that are applied in sequence to gradually eliminate local variability while adjusting the learned data geometry to increasingly coarser resolutions. We provide visualizations to exhibit our method as a "continuously-hierarchical" clustering with directions of eliminated variation highlighted at each step. The utility of our algorithm is demonstrated via neuronal data condensation, where the constructed multiresolution data geometry uncovers the organization, grouping, and connectivity between neurons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过非均质扩散凝结对数据进行粗粒化。
大数据通常具有存在于多个抽象层级的新兴结构,这对于描述观测数据的复杂交互和动态特性非常有用。在这里,我们通过不同粒度数据点的多分辨率几何图形来考虑多层次的抽象。为了构建这种几何图形,我们定义了一个时间同构扩散过程,它能有效地将数据点浓缩在一起,从而发现粒度越来越大的嵌套分组。这种非均质过程在数据亲和图上创建了一连串深层次的内在低通滤波器,这些滤波器依次应用,逐渐消除局部可变性,同时将学习到的数据几何图形调整到越来越粗的分辨率。我们提供了可视化效果,将我们的方法展示为 "连续-分层 "聚类,每一步都突出了消除变异的方向。我们的算法通过神经元数据浓缩来证明其实用性,在这种情况下,构建的多分辨率数据几何图形揭示了神经元之间的组织、分组和连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Private Continuous Survival Analysis with Distributed Multi-Site Data. Zero-shot Learning with Minimum Instruction to Extract Social Determinants and Family History from Clinical Notes using GPT Model. Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy among Healthcare Workers. Multi-Query Optimization Revisited: A Full-Query Algebraic Method. HPCGCN: A Predictive Framework on High Performance Computing Cluster Log Data Using Graph Convolutional Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1