Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Ufuk Topcu
{"title":"Scenario-Based Verification of Uncertain MDPs.","authors":"Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Ufuk Topcu","doi":"10.1007/978-3-030-45190-5_16","DOIUrl":null,"url":null,"abstract":"<p><p>We consider Markov decision processes (MDPs) in which the transition probabilities and rewards belong to an uncertainty set parametrized by a collection of random variables. The probability distributions for these random parameters are unknown. The problem is to compute the probability to satisfy a temporal logic specification within any MDP that corresponds to a sample from these unknown distributions. In general, this problem is undecidable, and we resort to techniques from so-called scenario optimization. Based on a finite number of samples of the uncertain parameters, each of which induces an MDP, the proposed method estimates the probability of satisfying the specification by solving a finite-dimensional convex optimization problem. The number of samples required to obtain a high confidence on this estimate is independent from the number of states and the number of random parameters. Experiments on a large set of benchmarks show that a few thousand samples suffice to obtain high-quality confidence bounds with a high probability.</p>","PeriodicalId":93056,"journal":{"name":"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...","volume":"12078 ","pages":"287-305"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402411/pdf/","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-45190-5_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We consider Markov decision processes (MDPs) in which the transition probabilities and rewards belong to an uncertainty set parametrized by a collection of random variables. The probability distributions for these random parameters are unknown. The problem is to compute the probability to satisfy a temporal logic specification within any MDP that corresponds to a sample from these unknown distributions. In general, this problem is undecidable, and we resort to techniques from so-called scenario optimization. Based on a finite number of samples of the uncertain parameters, each of which induces an MDP, the proposed method estimates the probability of satisfying the specification by solving a finite-dimensional convex optimization problem. The number of samples required to obtain a high confidence on this estimate is independent from the number of states and the number of random parameters. Experiments on a large set of benchmarks show that a few thousand samples suffice to obtain high-quality confidence bounds with a high probability.